ANN:DNN结构演进History—RNN】的更多相关文章

前言: CNN在图像处理领域的极大成功源于CNN的二维递进映射结构,通过训练多层卷积核来进行特征提取函数训练,在二维图像的稀疏表达和语义关联分析方面有天生的结构优势.而涉及时序问题的逻辑序列分析-边长序列分析,需要引入适合解决其问题的方法. 引入RNN:在深度学习领域,传统的前馈神经网络(feed-forward neural net,简称FNN)具有出色的表现,取得了许多成功,它曾在许多不同的任务上--包括手写数字识别和目标分类上创造了记录.甚至到了今天,FNN在解决分类任务上始终都比其他方法…
为了保持文章系列的连贯性,参考这个文章: DNN结构演进History-LSTM_NN 对于LSTM的使用:谷歌语音转录背后的神经网络 摘要: LSTM使用一个控制门控制参数是否进行梯度计算,以此避免梯度消失或者爆炸. LSTM的优势与不足     LSTM的不足 LSTM的高效截断版本并不能很轻松的解决"强延迟异或"类的问题. LSTM的每个存储单元块需要一个输入门和一个输出门,而这在其他的循环方法中并不是必需的. 常数误差流通过存储单元内部的"Constant Error…
前言 语音识别和动作识别(Action.Activities)  等一些时序问题,通过微分方式可以视为模式识别方法中的变长模式识别问题.语音识别的基元为音素.音节,字母和句子模式是在时间轴上的变长序列:Action的基元为Pose,action的识别为pose的时间序列模式. 我们跟随时间的脚步,试图解释现在.理解过去.甚至预测未来........ 在概率分析的层面,RNN通过循环结构展开处理变长问题,对不同的长度训练不同的概率模型,并以参数的形式存储在网络中,成为天生适合处理时序分析的复杂模型…
本文相对于摘抄的文章已经有大量的修改,如有阅读不适,请移步原文. 以下摘抄转自于维基:基于深度学习的图像识别进展百度的若干实践 从没有感知域(receptive field) 的深度神经网络,到固定感知域的卷积神经网络,再到可变感知域的递归神经网络,深度学习模型在各种图像识别问题中不断演进. 曾经爆炸式增长的参数规模逐步得到有效控制,人们将关于图像的先验知识逐渐用于深度学习,大规模并行化计算平台愈加成熟,这些使我们能够从容应对大数据条件下的图像识别问题. CNN的二维处理递进结构天然适合图像处理…
抄袭了一片文章,进行少量修改:http://www.gageet.com/2014/09203.php       作者:Christian Szegedy( google )  刘伟(北卡罗来纳  大学)  贾清扬(Google)  ....... (.......) GoogleNet的研究点是引入了Inception结构,构建网络中的网络,使网络稀疏化,使CNN网络更像一个"神经元-网络".因此可以实现:看起来更深,其实更稀疏,全局性能更好的网络.在数学上表示为,把稀疏网络转化成…
前言 谷歌推出的NASNet架构,用于大规模图像分类和识别.NASNet架构特点是由两个AutoML设计的Layer组成--Normal Layer and Reduction Layer,这样的效果是不再需要相关专家用human knowledge来搭建卷积网络架构,直接用RNN把Hyperparameter计算出来,这样就实现了网络结构自动学习. 论文:Learning Transferable Architectures for Scalable Image Recognition 强化学…
MNIST手写数字集 MNIST是一个由美国由美国邮政系统开发的手写数字识别数据集.手写内容是0~9,一共有60000个图片样本,我们可以到MNIST官网免费下载,总共4个.gz后缀的压缩文件,该文件是二进制内容. train-images-idx3-ubyte.gz:  training set images     图片样本,用来训练模型 train-labels-idx1-ubyte.gz:  training set labels     图片样本对应的数字标签 t10k-images-…
前言:模式识别问题 模式函数是一个从问题定义域到模式值域的一个单射. 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4(参考:CNNhttp://blog.csdn.net/wishchin/article/details/45286805),其模式函数为 f( x ) = { X-->Y }|{  X = ImageNet的图片,Y={ 1860个类的标记 }  }…
前言: 文章:CNN的结构分析-------:  文章:历年ImageNet冠军模型网络结构解析-------: 文章:GoogleLeNet系列解读-------: 文章:DNN结构演进History-CNN-GoogLeNet :Going Deeper with Convolutions :文章:Google最新开源Inception-ResNet-v2,借助残差网络进一步提升图像分类水准-----附有代码解析: 文章:深入浅出--网络模型中Inception的作用与结构全解析  科普一下…
前言: 一般所称的LSTM网络全叫全了应该是使用LSTM单元的RNN网络. 原文:(Caffe)LSTM层分析 入门篇:理解LSTM网络 LSTM的官方简介: http://deeplearning.net/tutorial/lstm.html#id1 GitHub上的Caffe_LSTM:  https://github.com/junhyukoh/caffe-lstm RNN-LSTM公式推导:http://blog.csdn.net/Dark_Scope/article/details/4…