苗条的生成树 Slim Span--洛谷】的更多相关文章

题目链接 题目描述 求所有生成树中最大边权与最小边权差最小的,输出它们的差值. 题目分析 要求所有生成树中边权极差最小值,起初令人无从下手.但既然要求所有生成树中边权极差最小值,我们自然需要对每一棵生成树都进行考虑,而我们又显然不可能枚举所有生成树,那么首先要解决的就是求在某一条件下某一棵生成树上的边权极差最小值. 我们试着把这个条件具体化,比如说固定一条边,为了方便,我们假定这条边是树中的最小边,也就是要在拥有同样的最小边的生成树中求边权极差最小值.这个问题很好解决.这些生成树中,因为最小的边…
[题意] 给出一个\(n(n<=100)\)个节点的的图,求最大边减最小边尽量小的生成树. [算法] \(Kruskal\) [分析] 首先把边按边权从小到大进行排序.对于一个连续的边集区间\([L,R]\),如果这些边使得\(n\)个点全部联通,则一定存在一个苗条度不超过\(W[R]-W[L]\)的生成树(其中\(W[i]\)表示排序后第\(i\)条边的权值). 从小到大枚举\(L\),对于每个\(L\),从小到大枚举\(R\),同时用并查集将新进入\([L,R]\)的边两端的点合并成一个集合…
传送门 钢哥终于没给黑题紫题了(卑微v 稍稍需要多想一点点 -------------------------------------------------------------------------------------------------------- 题意简述 求所有生成树中最大边权与最小边权差最小的,输出它们的差值. 输入: 输入文件包含多组测试数据,每组测试数据如下: 第1行:2个整数n m (2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2),n表示顶…
货车运输 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重. 现在有 \(q\) 辆货车在运输货物,司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物. 输入格式 第一行有两个用一个空格隔开的整数 \(n,m\) ,表示 \(A\) 国有 \(n\) 座城市和 \(m\) 条道路. 接下来 \(m\) 行每行三个整数 \(x,y,z\) ,每两个整数之间用一个空格隔开,表示…
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Given an undirected weighted graph G, you should find one of spanning trees specified as follows. The graph G is an ordered pair (V, E), where V is a se…
洛谷题目传送门 和魔法森林有点像,都是动态维护最小生成树(可参考一下Blog的LCT总结相关部分) 至于从小到大还是从大到小当然无所谓啦,我是从小到大排序,每次枚举边,还没连通就连,已连通就替换环上最小的一条边,可以保证最优.如果已经构成了生成树,就可以更新答案,因为当前枚举到的一定是生成树里最大的,所以直接用当前减去最小更新答案. 至于最小的怎样维护,其实根本不需要什么别的set什么的数据结构.只要标记一下在生成树中的边,再搞一个指针指向在树中最小的边就好啦.当最小的边也被替换,就把指针后移,…
洛谷题面传送门 大概是一个比较 trivial 的小 trick?学过了就不要忘了哦( 莫名奇妙地想到了 yyq 的"hot tea 不常有,做过了就不能再错过了" 首先看到这种二维问题我们可以很自然地想到将它们映射到一个二维平面上,即我们将 \(\sum\limits_{e\in E}a_e\) 看作横坐标 \(x\),将 \(\sum\limits_{e\in E}b_e\) 看作纵坐标 \(y\),那么我们所求即是全部生成树表示的点当中横纵坐标之积最大的点.显然这些点肯定都在所有…
Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Description Given an undirected weighted graph G, you should find one of spanning trees specified as follows. The graph G is an ordered pair (V, E), where V …
题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的苗条度.枚举所有这样的区间. 代码如下: # include<iostream> # include<cstdio> # include<set> # include<queue> # include<cstring> # include<al…
题目:Slim Span UVA 1395 题意:给出一副无向有权图,求生成树中最小的苗条度(最大权值减最小权值),如果不能生成树,就输出-1: 思路:将所有的边按权值有小到大排序,然后枚举每一条边,以这条边开始利用Kruskal算法生成树,生成过程中求出权值的最大值,这个最大值减去当前枚举的边的权值就是苗条度,再动态维护一下最小苗条度就可以了. #include <iostream> #include <algorithm> #include <queue> #inc…