2. Flink中的数据传输 在一个运行的application中,它的tasks在持续交换数据.TaskManager负责做数据传输.TaskManager的网络组件首先从缓冲buffer中收集records,然后再发送.也就是说,records并不是一个接一个的发送,而是先放入缓冲,然后再以batch的形式发送.这个技术可以高效使用网络资源,并达到高吞吐.类似于网络或磁盘 I/O 协议中使用的缓冲技术. 这里需要注意的是:传输缓冲buffer中的记录,隐含表示的是,Flink的处理模型是基于…
1.基本组件栈 了解Spark的朋友会发现Flink的架构和Spark是非常类似的,在整个软件架构体系中,同样遵循着分层的架构设计理念,在降低系统耦合度的同时,也为上层用户构建Flink应用提供了丰富且友好的接口. Flink分为架构分为三层,由上往下依次是API&Libraries层.Runtime核心层以及物理部署层 ​ API&Libraries层 作为分布式数据处理框架,Flink同时提供了支撑计算和批计算的接口,同时在此基础上抽象出不同的应用类型的组件库,如基于流处理的CEP(复…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能. 现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型,因为它们所提供的SLA(Service-Level-Aggreement)是完全不相同的:流处理一般需要支持低延迟.Exactly-once保证,而批处理需要支持高吞吐.高效处理. Flink从另一个视角看待流处理和批处理,将二者统一起来:Flink是完全支持流处理,也就是说作为…
序 工作中用Flink做批量和流式处理有段时间了,感觉只看Flink文档是对Flink ProgramRuntime的细节描述不是很多, 程序员还是看代码最简单和有效.所以想写点东西,记录一下,如果能对别人有所帮助,善莫大焉. 说一下我的工作,在一个项目里我们在Flink-SQL基础上构建了一个SQL Engine, 使懂SQL非技术人员能够使用SQL代替程序员直接实现Application, 然后在此基础上在加上一些拖拽的界面,使不懂SQL非技术人员 利用拖拽实现批量或流式数据处理的Appli…
一.flink架构 1.1.集群模型和角色 如上图所示:当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager.由 Client 提交任务给 JobManager,JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报 给 JobManager.TaskManager 之间以流的形式进行数据的传输.上述三者均为独立的 JVM 进程. Client 为提交 Job 的客户端,可以是运…
前言 flink作为基于流的大数据计算引擎,可以说在大数据领域的红人,下面对flink-1.7的架构进行逻辑上的分析并和spark做了一些关键点的对比. 架构 如图1,flink架构分为3个部分,client,JobManager(简称jm)和TaskManager(简称tm).client负责提交用户的应用拓扑到jm,注意这和spark的driver用法不同,flink的client只是单纯的将用户提交的拓扑进行优化,然后提交到jm,不涉及任何的执行操作.jm负责task的调度,协调check…
概述 FLIP6 对Flink架构进行了改进,引入了Dispatcher组件集成了所有任务共享的一些组件:SubmittedJobGraphStore,LibraryCacheManager等,为了保证高可用,存在多个Dispatcher进行Master选举,同时Dispatcher必须把JobGraphs和提交job的相关jar包存储到持久化仓库中,保证failover后能恢复已经运行的任务. 本文基于flink1.7.2进行分析,解析standalone模式的启动流程与架构,首先下载该版本的…
Apache Flink是什么 Flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理.这个目标看起来和Spark和类似.没错,Flink也在尝试解决 Spark在解决的问题.这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用.所以,Flink和Spark的目 标差别并不大,他们最主要的区别在于实现的细节,后面我会重点从不同的角度对比这两者. Apache Spark vs Apache Flink 1.抽象 Abstraction Spark中,对…
1.Flink架构 Flink系统的架构与Spark类似,是一个基于Master-Slave风格的架构,如下图所示: Flink集群启动时,会启动一个JobManager进程.至少一个TaskManager进程.在Local模式下,会在同一个JVM内部启动一个JobManager进程和TaskManager进程.当Flink程序提交后,会创建一个Client来进行预处理,并转换为一个并行数据流,这是对应着一个Flink Job,从而可以被JobManager和TaskManager执行.在实现上…