理解LSTM/RNN中的Attention机制】的更多相关文章

导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加入LSTM/RNN模型中的attention机制是如何克服传统编码器-解码器结构存在的问题的. 通过阅读这篇博文,你将会学习到: 传…
转自:http://www.jeyzhang.com/understand-attention-in-rnn.html,感谢分享! 导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对于长度较短的输入序列而言,该模型能够学习出对应合理的向量表示.然而,这种模型存在的问题在于:当输入序列非常长时,模型难以学到合理的向量表示. 在这篇博文中,我们将探索加…
一.解决的问题 采用传统编码器-解码器结构的LSTM/RNN模型存在一个问题,不论输入长短都将其编码成一个固定长度的向量表示,这使模型对于长输入序列的学习效果很差(解码效果很差). 注意下图中,ax 和 axx 部分. 公式如下 科普: http://www.jeyzhang.com/understand-attention-in-rnn.html 一文读懂Attention: https://mp.weixin.qq.com/s/0SWcAAiuN3BYtStDZXyAXg 二.基于Keras…
1.深度学习的seq2seq模型 从rnn结构说起 根据输出和输入序列不同数量rnn可以有多种不同的结构,不同结构自然就有不同的引用场合.如下图, one to one 结构,仅仅只是简单的给一个输入得到一个输出,此处并未体现序列的特征,例如图像分类场景.one to many 结构,给一个输入得到一系列输出,这种结构可用于生产图片描述的场景.many to one 结构,给一系列输入得到一个输出,这种结构可用于文本情感分析,对一些列的文本输入进行分类,看是消极还是积极情感.many to ma…
在很多博客和知乎中我看到了许多对于pytorch框架中RNN接口的一些解析,但都较为浅显甚至出现一些不准确的理解,在这里我想阐述下我对于pytorch中RNN接口的参数的理解. 我们经常看到的RNN网络是如图下所示: RNN的 1. timestep训练过程 这个左边图中间循环的箭头难以理解,所以将其按照时间轴展开成多个单元. 但是!!!! 网络只有一个,网络只有一个,网络只有一个, 并不是想右边那样画的.右边的图只不过是不同时刻的输入.因为每个时刻RNN会产生两个输出,一个output和一个s…
本文首发安全客:https://www.anquanke.com/post/id/104760 在刚结束的HITB-XCTF有一道pwn题gundam使用了2.26版本的libc.因为2.26版本中加入了一些新的机制,自己一开始没有找到利用方式,后来经大佬提醒,才明白2.26版本中新加了一种名叫tcache(thread local caching)的缓存机制. 本文将依据2.26源码探讨tcache机制详细情况并结合HITB-XCTF的gundam一题进行实战讲解.题目下载地址. Tcache…
本文转自,http://www.jeyzhang.com/understand-attention-in-rnn.html,感谢分享! LSTM 中实现attention:https://distill.pub/2016/augmented-rnns/, 文章链接中给出的第三方attention实现非常清晰!   理解LSTM/RNN中的Attention机制 Posted on 2017-07-03   |   In Deep Learning  |   1 Comment  |   4336…
原文链接: https://blog.csdn.net/qq_41058526/article/details/80578932 attention 总结 参考:注意力机制(Attention Mechanism)在自然语言处理中的应用 Attention函数的本质可以被描述为一个查询(query)到一系列(键key-值value)对的映射,如下图. 在计算attention时主要分为三步: 第一步是将query和每个key进行相似度计算得到权重,常用的相似度函数有点积,拼接,感知机等: 第二步…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
刚从图像处理的hole中攀爬出来,刚走一步竟掉到了另一个hole(fire in the hole*▽*) 1.RNN中的attentionpytorch官方教程:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html首先,RNN的输入大小都是(1,1,hidden_size),即batch=1,seq_len=1,hidden_size=embed_size,相对于传统的encoder-decod…