#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 假设有 n nn 根柱子,现要按下述规则在这 n nn 根柱子中依次放入编号为 1,2,3,4,⋯ 1, 2, 3, 4, \cdots1,2,3,4,⋯ 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 2 22 个相邻球的编号之和为完全平方数. 试设计一个算法,计算…
6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 假设有 n nn 根柱子,现要按下述规则在这 n nn 根柱子中依次放入编号为 1,2,3,4,⋯ 1, 2, 3, 4, \cdots1,2,3,4,⋯ 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 2 22 个相邻球的编号之和为完全平方数. 试设计一个算法,计算出…
Libre 6003 「网络流 24 题」魔术球 (网络流,最大流) Description 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为 1,2,3,4......的球. (1)每次只能在某根柱子的最上面放球. (2)在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在n根柱子上最多能放多少个球.例如,在4 根柱子上最多可 放11个球. ´编程任务: 对于给定的n,计算在 n根柱子上最多能放多少个球. Input 第1 行有 1个正整数n,表示柱子数.…
原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在根柱子上最多能放多少个球. Solution 如果是完全平方数则连有向边,那么一个柱子上的球就相当于图中的一条路径.二分答案,以是否能用不超过条路径覆盖作为条件. Code //「网络流 24 题」魔术球 #include <cstdio> #include <cstring>…
传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​,t),如果(u,v)(u,v)(u,v)可以匹配的话就连边(u1,v2)(u_1,v_2)(u1​,v2​),然后用最大流检验,如果能流动说明不用加柱子,否则需要新加一个柱子. 题目还要求输出方案. 那么我们在dfsdfsdfs的时候更新后继就可以了. 代码: #include<bits/stdc+…
题目描述 假设有 \(n\) 根柱子,现要按下述规则在这 \(n\) 根柱子中依次放入编号为 \(1, 2, 3, 4, \cdots\) 的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何 \(2\) 个相邻球的编号之和为完全平方数. 试设计一个算法,计算出在 \(n\) 根柱子上最多能放多少个球. 输入格式 文件第 \(1\) 行有 \(1\) 个正整数 \(n\),表示柱子数. 输出格式 第一行是球数.接下来的 \(n\) 行,每行是一根柱子上的球的编号. 样例 样例输入 4…
Air Raid Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4591    Accepted Submission(s): 3072 Problem Description Consider a town where all the streets are one-way and each street leads from one…
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 在一个有 m×n m \times nm×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 2 22 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法. 输入格式 文件第 1 11 行有 2 22 个正整数 m mm 和 n nn,分别表示棋盘的行数和…
https://www.luogu.org/problemnew/show/P2765 看到这一题第一眼想到:这不是二分最大流吗,后来发现还有一种更快的方法. 首先如果知道要放多少个球求最少的柱子,很显然是一道最小点路径覆盖的题,将一个点拆成u,v两个点,u和S相连,v和T相连,之后的有向边i,就用ui和vj相连即可. 但是这题首先不知道有多少个球,所以考虑依次加入点以及和这个点相关的边,然后在残余网络上跑新的最大流,如果可以跑出流量来意味着这个点成功在现有的柱子上按排上了,如果跑不出来说明按排…
本题枚举每多一个球需要多少个柱子,可以边加边边计算,每次只需要判断$i-Dinic()$即可:特别注意边界. #include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <ctime> #include <queue> usin…