[ch02-02] 非线性反向传播】的更多相关文章

系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 2.2 非线性反向传播 2.2.1 提出问题 在上面的线性例子中,我们可以发现,误差一次性地传递给了初始值w和b,即,只经过一步,直接修改w和b的值,就能做到误差校正.因为从它的计算图看,无论中间计算过程有多么复杂,它都是线性的,所以可以一次传到底.缺点是这种线性的组合最多只能解决线性问题,不能解决更复杂的问题.这个我们在神经网络基本原理中已经阐述过了,…
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!里面有…
    构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度.(x1=(1,2,3),则需要三个输入神经元)   一 前向后传播   隐层:…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与反向传播算法(Back propagation). 1.前向传播 ​​ 如图所示,这里讲得已经很清楚了,前向传播的思想比较简单. 举个例子,假设上一层结点i,j,k,…等一些结点与本层的结点w有连接,那么结点w的值怎么算呢?就是通过上一层的i,j,k等结点以及对应的连接权值进行加权和运算,最终结果再…
 反向传播 课程内容记录:https://zhuanlan.zhihu.com/p/21407711?refer=intelligentunit 雅克比矩阵(Jacobian matrix) 参见https://www.cnblogs.com/feifanrensheng/p/8615686.html 神经网络一 课程内容记录: (上)https://zhuanlan.zhihu.com/p/21462488?refer=intelligentunit (下)https://zhuanlan.z…
这里将讲解tensorflow是如何通过计算图来更新变量和最小化损失函数来反向传播误差的:这步将通过声明优化函数来实现.一旦声明好优化函数,tensorflow将通过它在所有的计算图中解决反向传播的项.当我们传入数据,最小化损失函数,tensorflow会在计算图中根据状态相应的调节变量. 这里先举一个简单的例子,从均值1,标准差为0.1的正态分布中随机抽样100个数,然后乘以变量A,损失函数L2正则函数,也就是实现函数X*A=target,X为100个随机数,target为10,那么A的最优结…
本文大量参照 David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning representation by back-propagating errors, Nature, 323(9): 533-536, 1986. 在现代神经网络中, 使用最多的算法当是反向传播(BP). 虽然BP有着收敛慢, 容易陷入局部最小等缺陷, 但其易用性, 准确度却是其他算法无可比拟的. 在本文中, $w_{ji}$为连接前一层$…
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.3循环神经网络模型 为什么不使用标准的神经网络 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列, 在不同的例子中输入数据和输出数据具有不同的长度,即每个数据不会有一样的长度 也许每个语句都有最大长度,能够通过Padding 的方式填充数据,但总体来说不是一个好的表达方式. 不共享从文本的不同位置上学到的特征 例如普通神经网络可以学习到Harry这个单词出现在\(x^{<1>}\)的位置,但是如果…
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 2.1 线性反向传播 2.1.1 正向计算的实例 假设我们有一个函数: \[z = x \cdot y \tag{1}\] 其中: \[x = 2w + 3b \tag{2}\] \[y = 2b + 1 \tag{3}\] 计算图如图2-4. 图2-4 简单线性计算的计算图 注意这里x, y, z不是变量,只是计算结果.w, b是才变量.因为在后面要学…