KNN算法实现手写体区分】的更多相关文章

KNN算法在python里面可以使用pip install指令安装,我在实现之前查看过安装的KNN算法,十分全面,包括了对于手写体数据集的处理.我这里只是实现了基础的识别方法,能力有限,没有数据处理方法. 电脑太渣,没有自己训练数据集. 选取的数据集是已经处理好的. 如果自己要手动处理数据集,推荐mnist的.自己要写算法处理成图片. #! /usr/bin/env python # -*- coding:utf-8 -*- # Author: gjt import numpy as npfro…
#!/usr/bin/python #coding:utf-8 import numpy as np import operator import matplotlib import matplotlib.pyplot as plt import os ''''' KNN算法 1. 计算已知类别数据集中的每个点依次执行与当前点的距离. 2. 按照距离递增排序. 3. 选取与当前点距离最小的k个点 4. 确定前k个点所在类别的出现频率 5. 返回前k个点出现频率最高的类别作为当前点的预测分类 ''…
接着统计学习中knn算法实验(1)的内容 Problem: Explore the data before classification using summary statistics or visualization Pre-process the data (such as denoising, normalization, feature selection, …) Try other distance metrics or distance-based voting Try other…
具体knn算法概念参考knn代码python实现上面是参考<机器学习实战>的代码,和knn的思想 # _*_ encoding=utf8 _*_ import numpy as npimport tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data # 导入手写体识别的数据mnist = input_data.read_data_sets("../data", one_hot=T…
在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资料都可以查到,简单来说,就是将图像分成一个cell,通过对每个cell的像素进行梯度处理,进而根据梯度方向和梯度幅度来得到cell的图像特征.随后,将每个cell的图像特征连接起来,得到一个BLock的特征,进而得到一张图片的特征.Opencv当中自带HOG算法,可以直接调用,进行图像的特征提取.但…
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有200个样本. ♦每个样本保持在一个txt文件中. ♦手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下: ♦目录trainingDigits存放的是大约2000个训练数据 ♦目录testDigits存放大约900个测试数据. trainingDi…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程:只需要加载训练数据: 测试过程:通过之前加载的训练数据,计算测试数据集中各个样本的标签,从而完成测试数据集的标注: 2.代码 具体代码如下: #!/usr/bin/env/ python # -*- coding: utf-8 -*- import csv import random from m…
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数 tile() 如tile(A,n)就是将A重复n次 a = np.array([0, 1, 2]) np.tile(a, 2) array([0,…
学习 machine learning 的最低要求是什么?  我发觉要求可以很低,甚至初中程度已经可以.  首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可.   数学方面,只需要知道「两点间距离」的公式(中学的座标几何会读到). 这本书第二章介绍 kNN 算法,包括 Python 程序: 其他章节的数学要求可能不同,但我目的是想说明,很多实用的人工智能的原理,其实也很简单的. kNN 是什么?  For example: 开始时,所有 data points 的 l…