平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在高…
题目链接 题意 : 有种不同的字符,每种字符有无限个,要求用这k种字符构造两个长度为n的字符串a和b,使得a串和b串的最长公共部分长度恰为m,问方案数 分析 : 直觉是DP 不过当时看到 n 很大.但是 m 很小的时候 发现此题DP并不合适.于是想可能是某种组合数学的问题可以直接公式算 看到题解的我.恍然大悟.对于这种数据.可以考虑一下矩阵快速幂优化的DP 首先要想到线性递推的 DP 式子 最直观的想法就是 dp[i][j] = 到第 i 个位置为止.前面最长匹配长度为 j 的方案数 但是如果仔…
原文链接www.cnblogs.com/zhouzhendong/p/Cayley-Hamilton.html Cayley-Hamilton定理与矩阵快速幂优化.常系数线性递推优化 引入 在开始本文之前,我们先用一个例题作为引入. 给定一个 \(n \times n\) 的矩阵 \(M\) , 求 \(M ^ k\) . \(n\leq 50, k\leq 10 ^ {50000}\) . 注意到 \(n\) 十分小,但是 $ \log k$ 非常大.如果使用传统的矩阵快速幂,时间复杂度为 \…
题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC 这其中任意一个字符串的方案数 分析 : 方法一 (BM 求线性递推) 直接暴力出前 10 项的答案.然后猜它其实可以由线性递推递推而来 丢进杜教的 BM 模板里面就可以直接求出第 N 项了 实际上这个可以不用猜.这种不包含某些串的题目 如果你做过类似的.就会知道实际上是可以构造出一个矩阵然后快速幂…
题目:https://www.acwing.com/problem/content/228/ 题意:有一个二维矩阵,这里只给你第一行和第一列,要你求出f[n][m],关系式有    1,  f[0][m]=f[0][m-1]*10+3       2,   f[n][m]=f[n-1][m]+f[n][m-1] 思路:我们可以看出这里n的范围很小  ,m的范围很大,我们直接递推过去肯定超时,线性递推超时,那么肯定要用矩阵快速幂,但是这个有事二维的 那么我们只能想下怎么改成是一维的递推式,我们可以…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
题解见X姐的论文 矩阵乘法递推的优化.仅仅是mark一下. .…
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n-2]+⋯a_t f[n-t]&n∉Value \end{cases}\] \((a_1,a_2,-,a_t,C∈\mathbb{R},0<t<n)\) 其中\(Value\)为终止条件的集合. 例如:斐波那契\((Fibonacci)\)数列则通过下面这个线性递推方程定义 \[f[n]=…
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技巧 f[n]表示宽度为n的值,然后枚举最后一个连续高度至少为1的块,dp数组辅助 神仙dp:dp[i][j]表示宽度为i,j的高度出现限制,任意矩形不大于k的概率 设计确实巧妙:宽度利于转移给f,高度利于自己的转移 dp数组转移:枚举第一个到达j的限制的位置,这样,前面部分限制至少是j+1,后面至少…
才发觉自己数学差的要死,而且脑子有点浑浑噩噩的,学了一个晚上才学会 如果说的有什么不对的可以在下面嘲讽曲明 以下无特殊说明时,默认方阵定义在实数域上,用\(|A|\)表示\(A\)的行列式 特征值与特征向量 对于一个\(n\)阶方阵\(A\),如果存在某个列向量\(v\)和\(\lambda\in R\),使得 \[ \begin{aligned} Av=\lambda v \end{aligned} \] 则我们称\(v\)为矩阵\(A\)的特征向量,\(\lambda\)为对应的特征值 不难…