win7上安装theano keras深度学习框架】的更多相关文章

近期在学习深度学习,需要在本机上安装keras框架,好上手.上网查了一些资料,弄了几天今天终于完全搞好了.本次是使用GPU进行加速,使用cpu处理的请查看之前的随笔keras在win7下环境搭建 本机配置:win7 64位的,4G内存,gtx970显卡 安装条件: vs2010(不一定非要是vs2010,恰好我有vs2010,应该是配置GPU编程时需要用到vs的编译器) cuda如果系统是64位的就下载64位,至于cuda的版本,有的说要和对应的显卡版本匹配,我就安装了8.0,实验来看,cuda…
1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2.简介 Keras为图片数据输入提供了一个很好的接口,即Keras.preprocessing.image.ImageDataGenerator类,该类生成一个数据生成器Generator对象,依照循环批量生成对应于图像信息的多维矩阵.根据后台运行环境的不同(例如:TensorFlow,Theano…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
推荐GitHub上10 个开源深度学习框架   日前,Google 开源了 TensorFlow(GitHub),此举在深度学习领域影响巨大,因为 Google 在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且 Google 自己的 Gmail 和搜索引擎都在使用自行研发的深度学习工具. 无疑,来自 Google 军火库的 TensorFlow 必然是开源深度学习软件中的明星产品,登陆 GitHub 当天就成为最受关注的项目,当周获得评星数就轻松超过 1 万个. 对于希望在应用中整合深度学…
一.前言 由于前一段时间以及实现了基于keras深度学习框架下yolov3的算法,本来想趁着余热将自己的心得体会进行总结,但由于前几天有点事就没有完成计划,现在趁午休时间整理一下. 二.Keras框架的介绍 1.Keras是一个用Python编写的高级API,它提供了一个简单和模块化的API来创建和训练神经网络,同时也隐藏了大部分复杂的细节.其能够在TensorFlow.Theano或CNTK上运行. 2.keras的模型结构 常用模型有:序贯模型(Sequential)和函数式模型(Model…
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU.keras官方文档地址 地址 2.流程 先使用CNN进行训练,利用Theano函数将CNN全连接层的值取出来,给SVM进行训练 3.结果示例 因为这里只是一个演示keras&SVM的demo,未对参数进行过多的尝试,结果一般…
https://blog.csdn.net/yongjiankuang/article/details/50485610 其实过程很简单,首先说一下安装条件: 1.win7 (32和64都可以,下载安装包时一定要选择对应的) 2.Anaconda(转到官方下载,打开之后稍微等一会就会出来下载链接了.之所以选择它是因为它内置了python,以及numpy.scipy两个必要库和一些其他库,比起自己安装要省事.至于版本随便选择了,如果想安装python3.4就下载对应的Anaconda3.本教程使用…
1.安装Anaconda 面向科学计算的Python IDE--Anaconda 2.打开Anaconda Prompt 3.安装gcc环境 (1)conda update conda (2)conda install libpython (3)conda install mingw (4)在系统环境变量中的path添加: D:\Anaconda; D:\Anaconda\Scripts; D:\Anaconda\MinGW\bin; D:\Anaconda\MinGW\x86_64-w64-m…
一.损失函数的使用 损失函数[也称目标函数或优化评分函数]是编译模型时所需的两个参数之一. model.compile(loss='mean_squared_error', optimizer='sgd') 或 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 可以传递一个现有的损失函数名或者一个TensorFlow/Theano符号函数.该符号函数为每个数据点返回一个标…
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为执行深度学习中大规模神经网络算法的运算所设计.其实,它可以被更好的理解为一个数学表达式的编辑器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于GPU或CPU.它与后来出现的TensorFlow功能十分相似,因而两者常常被放在一起比较.它们本身都偏底层,同样的,Theano 像…