1.LeNet LeNet是指LeNet-5,它是第一个成功应用于数字识别的卷积神经网络.在MNIST数据集上,可以达到99.2%的准确率.LeNet-5模型总共有7层,包括两个卷积层,两个池化层,两个全连接层和一个输出层. import torch import torch.nn as nn from torch.autograd import Variable #方形卷积核和等长的步长 m1=nn.Conv2d(16,33,3,stride=2) #非长方形卷积核,非等长的步长和边界填充 m…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! LeNet / AlexNet / GoogLeNet / VGGNet/ ResNet 前言:这个系列文章将会从经典的卷积神经网络历史开始,然后逐个讲解卷积神经网络结构,代码实现和优化方向. THE HISTORY OF NEURAL NETWORKS http://dataconomy.com/2017/04/history-neural-networks/…
卷积神经网络在几个主流的神经网络开源架构上面都有实现,我这里不是想实现一个自己的架构,主要是通过分析一个最简单的卷积神经网络实现代码,来达到进一步的加深理解卷积神经网络的目的. 笔者在github上找到了一个十分简单的卷积神经网络python的代码实现: https://github.com/ahmedfgad/NumPyCNN 具体的怎么使用这里就不用说了,这里都有介绍,我只是分析一下这个代码的实现过程并解析代码,梳理一下神经网络是怎么使用的和构造原理. 一般的神经网络主要包含几个步骤: 准备…
深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的.这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,…
一.卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. 它包括卷积层(convolutional layer)和池化层(pooling layer). 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征.一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的…
content 概述 文字识别系统LeNet-5 简化的LeNet-5系统 卷积神经网络的实现问题 深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 第二篇,讲讲经典的卷积神经网络.我不打算详细描述卷积神经网络的生物学运行机理,因为网络上有太多的教程可以参考.这里,主要描述其数学上的计算过程,也就是如何自己编程去实现的问题. 1. 概述 回想一下BP神经网络.BP网络每一层节点是一个线性的一维排列…
http://blog.csdn.net/real_myth/article/details/52273930 卷积神经网络(CNN)新手指南 2016-07-29 18:22 Blake 1条评论 卷积神经网络(Convolutional Neural Network,CNN)新手指南 引言 卷积神经网络:听起来像是生物与数学还有少量计算机科学的奇怪结合,但是这些网络在计算机视觉领域已经造就了一些最有影响力的创新.2012年神经网络开始崭露头角,那一年Alex Krizhevskyj在Imag…
前言,好久不见,大家有没有想我啊.哈哈.今天我们来随便说说卷积神经网络. 1卷积神经网络的优点 卷积神经网络进行图像分类是深度学习关于图像处理的一个应用,卷积神经网络的优点是能够直接与图像像素进行卷积,从图像像素中提取图像特征,这种处理方式更加接近人类大脑视觉系统的处理方式.另外,卷积神经网络的权值共享属性和pooling层使网络需要训练的参数大大减小,简化了网络模型,提高了训练的效率. 2 卷积神经网络的架构 卷积神经网络与原始神经网络有什么区别呢,现在我分别给他们的架构图. 图 1 普通深度…
前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neural Network)引入到声学模型建模中,将FFDNN的输出层概率用于替换之前GMM-HMM中使用GMM计算的输出概率,引领了DNN-HMM混合系统的风潮.长短时记忆网络(LSTM,LongShort Term Memory)可以说是目前语音识别应用最广泛的一种结构,这种网络能够对语音的长时相关性…
讲授Lenet.Alexnet.VGGNet.GoogLeNet等经典的卷积神经网络.Inception模块.小尺度卷积核.1x1卷积核.使用反卷积实现卷积层可视化等. 大纲: LeNet网络 AlexNet网络 VGG网络 GoogLeNnet网络 反卷积可视化 数学特性 根据卷积结果重构图像 本集总结 LeNet网络: 卷积神经网络是1989年Y.LeCun提出的,真正有意义的卷积神经网络是LeNet-5网络,它是Y.LeCun1998年提出来的,现在尊称Y.LeCun为卷积神经网络之父,后…