TSP问题 遗传算法 智能优化算法】的更多相关文章

写了半天,效率还是有点低的,以后有空再优化下: //用次序表示法来表示个体编码 #include<iostream> #include<fstream> #include<stdlib.h> #include<time.h> using namespace std; struct individual{ ]; int p; //1-p为可以进行杂交的概率 }; int n; //城市的数量 ][]; //城市之间的距离 individual group[];…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
要求: TSP 算法(Traveling Salesman Problem)是指给定 n 个城市和各个城市之间的距离,要 求确定一条经过各个城市当且仅当一次的最短路径,它是一种典型的优化组合问题,其最优 解得求解代价是指数级的.TSP 问题代表一类优化组合问题,在实际工程中有很多应用,如 计算机联网.电子地图.交通诱导等,具有重要的研究价值.遗传算法和禁忌搜所算法都是 是一种智能优化算法,具有全局的优化性能.通用性强.这种算法一般具有严密的理论依据, 理论上可以在一定的时间内找到最优解或近似最优…
群智能优化算法测试函数matlab源代码 global M; creatematrix(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %画ackley图. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ackley x from[-5 5] % x=-5:0.01:5; % [x,y]=meshgrid(x); % temp1=x.^2+y.^2; % temp2=cos(2*pi*x)+cos(2*pi*y); % z=20+…
00 前言 各位读者大家好,好久没有介绍算法的推文了,感觉愧对了读者们热爱学习的心灵.于是,今天我们带来了一个神奇的优化算法--遗传算法! 它的优点包括但不限于: 遗传算法对所求解的优化问题没有太多的数学要求,由于他的进化特性,搜索过程中不需要问题的内在性质,对于任意形式的目标函数和约束,无论是线性的还是非线性的,离散的还是连续的都可处理. 进化算子的遍历性(各态历经性)使得遗传算法能够非常有效地进行概率意义的全局搜素. 遗传算法对于各种特殊问题可以提供极大的灵活性来混合构造领域特有的启发式,从…
之前做特征选择,实现过基于群智能算法进行最优化的搜索,看过一些群智能优化算法的论文,在此做一下总结. 在生活或者工作中存在各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题"在一定成本下,如何使利润最大化"等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称. 工程设计中最优化问题(optimalization problem)的一般提法是要选择一组参数(变量),在满足一系列有关的限制条件(约束)下,使设计…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , CI)是以生物进化的观点认识和模拟智能.按照这一观点,智能是在生物的遗传.变异.生长以及外部环境的自然选择中产生的.在用进废退.优胜劣汰的过程中,适应度高的结构被保存下来,智能水平也随之提高.因此计算智能就是基于结构演化的智能.计算智能的主要方法有人工神经网络.遗传算法.遗传程序.演化程序.局部搜…
憋了两周终于把开题报告憋出来了,再一次证明自己不适合搞学术,哎--,花了点时间把报告中提到的粒子群算法看了看,看了些资料,用java跑起来. 算法简介 粒子群算法最先由Barnhart博士和Kennedy博士于1995 年提出,是一种源于对鸟群捕食行为的研究而发明的进化计算技术,原理是模仿鸟群寻觅食物的搜索过程,设想鸟群在一定区域搜寻食物,在不知道食物确切位置的情况下,鸟群依靠群体中个体判断距离食物的远近程度来调节飞行方向和飞行速度,最终通过群体的经验和自身记忆的智慧找到食物. 算法原理 算法描…
01 概述 Greedy Randomized Adaptive Search,贪婪随机自适应搜索(GRAS),是组合优化问题中的多起点元启发式算法,在算法的每次迭代中,主要由两个阶段组成:构造(construction)和局部搜索( local search). 构造(construction)阶段主要用于生成一个可行解,而后该初始可行解会被放进局部搜索进行邻域搜索,直到找到一个局部最优解为止. 02 整体框架 如上面所说,其实整一个算法的框架相对于其他算法来说还算比较简单明了,大家可以先看以…
ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型,又称整合移动平均自回归模型(移动也可称作滑动),时间序列预测分析方法之一.ARIMA(p,d,q)中,AR是"自回归",p为自回归项数:MA为"滑动平均",q为滑动平均项数,d为使之成为平稳序列所做的差分次数(阶数). ARIMA(p,d,q)模型是ARMA(p,q)模…
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简称NN,神经网络是从信息处理角度对人脑的神经元网络系统进行了模拟的相关算法)一样,群体智能优化算法也属于一种生物启发式方法,它们三者可以称为是人工智能领域的三驾马车(PS:实际上除了上述三种算法还有一些智能算法应用也很广泛,比如模拟金属物质热力学退火过程的模拟退火算法(Simulated Algorithm,…
需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能以最低的成本完成针对这50个客户的揽货行为 是个最优化问题(运筹学),我们只考虑简化后的模型,不考虑路面交通.时间窗口这些复杂计算,用蚁群优化算法来实现接近最优解的计算. 关于蚁群优化算法的理论请看这篇文章:https://www.cnblogs.com/asxinyu/p/Path_Optimiz…
C# 蚁群优化算法实现 需求为(自己编的,非实际项目): 某配送中心进行揽货,目标客户数为50个客户,配送中心目前的运力资源如下: 现有车辆5台 单台运力最大行驶距离200千米 单台运力最大载重公斤1吨 问:运力怎样走法才能以最低的成本完成针对这50个客户的揽货行为 是个最优化问题(运筹学),我们只考虑简化后的模型,不考虑路面交通.时间窗口这些复杂计算,用蚁群优化算法来实现接近最优解的计算. 关于蚁群优化算法的理论请看这篇文章:https://www.cnblogs.com/asxinyu/p/…
1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于 Swarm Inteligence的优化方法.同遗传算法类似,也是一种基于群体叠代的,但并没有遗传算法用的交叉以及变异,而是粒子在解空间追随最优的粒子进行搜索.PSO的优势在于简单容易实现同时又有深刻的智能背景,既适合科学研究,又特别适合工程应用,并且没有许多参数需要…
1 最优化概论 (1) 最优化的目标 最优化问题指的是找出实数函数的极大值或极小值,该函数称为目标函数.由于定位\(f(x)\)的极大值与找出\(-f(x)\)的极小值等价,在推导计算方式时仅考虑最小化问题就足够了.极少的优化问题,比如最小二乘法,可以给出封闭的解析解(由正规方程得到).然而,大多数优化问题,只能给出数值解,需要通过数值迭代算法一步一步地得到. (2) 有约束和无约束优化 一些优化问题在要求目标函数最小化的同时还要求满足一些等式或者不等式的约束.比如SVM模型的求解就是有约束优化…
参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误,还望读者能不吝指出.另外,由于原文太长,分了两部分翻译,本篇主要是梯度下降优化算法的总结,下篇将会是随机梯度的并行和分布式,以及优化策略的总结. 梯度下降是优化中最流行的算法之一,也是目前用于优化神经网络最常用到的方法.同时,每个优秀的深度学习库都包含了优化梯度下降的多种算法的实现(比如, las…
近日,小米正式宣布开源 SOAR. 截至今日,该项目已经获得了 350 个「star」以及 44 个「fork」(GitHub项目地址:https://github.com/XiaoMi/soar) SOAR 简介 SOAR,即 SQL Optimizer And Rewriter,是一款 SQL 智能优化与改写工具,由小米运维 DBA 团队出品 SOAR 体系架构 SOAR主要由语法解析器,集成环境,优化建议,重写逻辑,工具集五大模块组成. 语法解析和语法检查 一条SQL从文件,标准输入或命令…
算法学习自:MATLAB与机器学习教学视频 1.粒子群优化算法概述 粒子群优化(PSO, particle swarm optimization)算法是计算智能领域,除了蚁群算法,鱼群算法之外的一种群体智能的优化算法,该算法最早由Kennedy和Eberhart在1995年提出的,该算法源自对鸟类捕食问题的研究. • PSO算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置.速度和适应度值三项指标表示该粒子特征. • 粒子在解空间中运动,通过跟踪个体极值Pb…
MATLAB粒子群优化算法(PSO) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.介绍 粒子群优化算法(Particle Swarm Optimization Algorithm)是一种群智能算法,为了寻求全局最优.群体迭代,粒子在解空间追随最优的粒子进行搜索. 粒子群算法的思想源于对鸟群捕食行为的研究,模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作使群体达到最优目的,是一种基于Swarm Intelligence的优化方法. 马良教授在他…
多目标优化算法(一)NSGA-Ⅱ(NSGA2) 本文链接:https://blog.csdn.net/qq_40434430/article/details/82876572多目标优化算法(一)NSGA-Ⅱ(NSGA2)注:没有想到这篇博客竟然有很多人查看,这是我去年写的算法,里面难免会有一些错误,大家可以看看评论区,这里的matlab代码写的不太好,是以C语言思维写的,基本上没有并行,初学者建议可以看看platEMO上的源代码,提前培养好写代码的习惯! 0. 前言这个算法是本人接触科研学习实现…
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学课的期末读书报告,我选择的主题是「分析深度学习中的各个优化算法」.在此前的工作中,自己通常就是无脑「Adam 大法好」,而对算法本身的内涵不知所以然.一直希望能抽时间系统的过一遍优化算法的发展历程,直观了解各个算法的长处和短处.这次正好借着作业的机会,补一补课. 本文主要借鉴了 @Juliuszh…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 作者:Geppetto 前面我们介绍了特征选择(Feature Selection,FS)与离散化数据的重要性,总览的介绍了PSO在FS中的重要性和一些常用的方法.今天讲一讲FS与离散化的背景,介绍本文所采用的基于熵的切割点和最小描述长度原则(MDLP). A.特征选择 特征选择是一个组合优化问题,因为在具有N个特征的数据集上有2N个可能的不同特征子集.FS方法通…
PSO 最近需要用上一点最优化相关的理论,特地去查了些PSO算法相关资料,在此记录下学习笔记,附上程序代码.基础知识参考知乎大佬文章,写得很棒! 传送门 背景 起源:1995年,受到鸟群觅食行为的规律性启发,James Kennedy和Russell Eberhart建立了一个简化算法模型,经过多年改进最终形成了粒子群优化算法(Particle Swarm Optimization, PSO) ,也可称为粒子群算法[1] . 特点:粒子群算法具有收敛速度快.参数少.算法简单易实现的优点(对高维度…
本文介绍一种网格分割线的优化算法,该方法能够找到网格上更精确.更光滑的分割位置,并且分割线能够自由地合并和分裂,下面介绍算法的具体原理和过程. 曲面上的曲线可以由水平集(level set)形式表示,通常表示为φ(r) = 0,其代表曲面上具有相同函数值的等值曲线,由于函数值为零,一般称为零水平集.当曲线在曲面上移动时,可以用如下水平集方程表示: 上式为函数φ(r)对时间t的偏导,即函数φ(r)随时间t的变化情况,等式右边v表示曲线移动速度,▽φ表示曲面上函数φ(r)的梯度. 驱动曲线在曲面上移…
作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法.确确实实只是简单介绍一下,原因主要有两个:第一这类优化算法,特别是牵涉到实现细节的时候,干巴巴地讲算法不太好玩,有时候讲出来每个人实现得结果还不一样,提一下方法,再结合实际的实现代码的话,应该会更加明了,而且也能看出理论和实践之间的差别:另外(其实这个是主要原因)我自己对这一块也确实不太懂. . 先回忆一下我们之前得出的…
近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效.有代表性的多目标优化算法主要有NSGA.NSGA-II.SPEA.SPEA2.PAES和PESA等.粒子群优化(PSO)算法是一种模拟社会行为的.基于群体智能的进化技术,以其独特的搜索机理.出色的收敛性能.方便的计算机实现,在工程优化领域得到了广泛的应用,多目标PSO(MOPSO)算法应用到了不同的优化领域[9~11],但存在计算复杂度高.通用性低.收敛性不好等缺点. 多目标粒子群(MOPSO)算法是由Ca…
原文:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规划优化算法,特别针对线性SVM和数据稀疏时性能更优.关于SMO最好的资料就是他本人写的<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector Machi…
优化算法-BFGS BGFS是一种准牛顿算法, 所谓的"准"是指牛顿算法会使用Hessian矩阵来进行优化, 但是直接计算Hessian矩阵比较麻烦, 所以很多算法会使用近似的Hessian, 这些算法就称作准牛顿算法(Quasi Newton Algorithm). 1. 牛顿算法(Newton Algorithm) 牛顿算法考虑了函数的二阶单数, 是一种二阶优化方法, 并且是所有其他二阶优化方法的鼻祖. 作为对比, 梯度下降(Gradient Descent)只考虑了函数的一阶导数…
  小猴子下落 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 有一颗二叉树,最大深度为D,且所有叶子的深度都相同.所有结点从左到右从上到下的编号为1,2,3,·····,2的D次方减1.在结点1处放一个小猴子,它会往下跑.每个内结点上都有一个开关,初始全部关闭,当每次有小猴子跑到一个开关上时,它的状态都会改变,当到达一个内结点时,如果开关关闭,小猴子往左走,否则往右走,直到走到叶子结点. 一些小猴子从结点1处开始往下跑,最后一个小猴儿会跑到哪里呢?   输入…
1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,所以我们对数据做如下处理: 如图所示,我们以1000为单位,将数据进行划分,令\(x^{\{1\}}=\{x^{(1)},x^{(2)}--x^{(1000)}\}\), 一般地用\(x^{\{t\}},y^{\{t\}}\)来表示划分后的mini-batch. 注意区分该系列教学视频的符号标记: 小括号() 表示具体的某一个元素,指一个…