决策树J48算法】的更多相关文章

1.J48原理 基于从上到下的策略,递归的分治策略,选择某个属性放置在根节点,为每个可能的属性值产生一个分支,将实例分成多个子集,每个子集对应一个根节点的分支,然后在每个分支上递归地重复这个过程.当所有实例有相同的分类时,停止. 问题:如何选择根节点属性,建立分支呢? 例如:weather.arff 我们希望得到的是纯分裂,即分裂为纯节点,希望找到一个属性,它的一个节点全是yes,一个节点全是no,或许第三个节点又全是yes,这是最好的情况,因为如果是混合节点则需要再次分裂. 通过量化来确定能产…
前面学习了ID3,知道了有关“熵”以及“信息增益”的概念之后. 今天,来学习一下C4.5.都说C4.5是ID3的改进版,那么,ID3到底哪些地方做的不好?C4.5又是如何改进的呢? 在此,引用一下前人的总结: ID3算法是决策树的一个经典的构造算法,在一段时期内曾是同类研究工作的比较对象,但通过近些年国内外学者的研究,ID3算法也暴露出一些问题,具体如下: (1)信息增益的计算依赖于特征数目较多的特征,而属性取值最多的属性并不一定最优. (2)ID3是非递增算法. (3)ID3是单变量决策树(在…
决策树是一种非常经典的分类器,它的作用原理有点类似于我们玩的猜谜游戏.比如猜一个动物: 问:这个动物是陆生动物吗? 答:是的. 问:这个动物有鳃吗? 答:没有. 这样的两个问题顺序就有些颠倒,因为一般来说陆生动物是没有鳃的(记得应该是这样的,如有错误欢迎指正).所以玩这种游戏,提问的顺序很重要,争取每次都能够获得尽可能多的信息量. AllElectronics顾客数据库标记类的训练元组 RID age income student credit_rating Class: buys_comput…
      ID3算法(Iterative Dichotomiser 3 迭代二叉树3代),是一个由Ross Quinlan发明的用于决策树的算法:简单理论是越是小型的决策树越优于大的决策树. 算法归纳: 1.使用所有没有使用的属性并计算与之相关的样本熵值: 2.选取其中熵值最小的属性 3.生成包含该属性的节点 4.使用新的分支表继续前面步骤   ID3算法以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类:所以归根结底,是为了从一堆数据中生成决策树而采取的一种归纳方式:  …
ID3分类算法的编码实现 <?php /* *决策树ID3算法(分类算法的实现) */ /* *求信息增益Grain(S1,S2) */ //-------------------------------------------------------------------- function Grain($train,$attriname,$flagsyes,$flagsno) { $attributename = array(NULL);//用来存放属性$attriname不同的属性值 a…
本文介绍如何利用决策树/判定树(decision tree)中决策树归纳算法(ID3)解决机器学习中的回归问题.文中介绍基于有监督的学习方式,如何利用年龄.收入.身份.收入.信用等级等特征值来判定用户是否购买电脑的行为,最后利用python和sklearn库实现了该应用. 1.  决策树归纳算法(ID3)实例介绍 2.  如何利用python实现决策树归纳算法(ID3) 1.决策树归纳算法(ID3)实例介绍 首先介绍下算法基本概念,判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属…
CART生成 CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支.这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布. CART算法由以下两步组成: 决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大: 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准. CART决策树的生成就是…
决策树分类算法 1.概述 决策树(decision tree)——是一种被广泛使用的分类算法. 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用. 2.算法思想 通俗来说,决策树分类的思想类似于找对象.现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢…
参考: 统计学习方法>第五章决策树]   http://pan.baidu.com/s/1hrTscza 决策树的python实现     有完整程序     决策树(ID3.C4.5.CART.随机森林)    对决策树的python实现进行了详细的介绍 用Python开始机器学习(2:决策树分类算法)     特别 决策树(三)--完整总结(ID3,C4.5,CART,剪枝,替代)   理论   #coding:utf-8 # ID3算法,建立决策树 import numpy as np i…
http://blog.csdn.net/lsldd/article/details/41223147 从这一章开始进入正式的算法学习. 首先我们学习经典而有效的分类算法:决策树分类算法. 1.决策树算法 决策树用树形结构对样本的属性进行分类,是最直观的分类算法,而且也可以用于回归.不过对于一些特殊的逻辑分类会有困难.典型的如异或(XOR)逻辑,决策树并不擅长解决此类问题. 决策树的构建不是唯一的,遗憾的是最优决策树的构建属于NP问题.因此如何构建一棵好的决策树是研究的重点. J. Ross Q…