背景 在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们必须要拥有从图片中切割出想要区块(文字.按钮.商品图片等)的能力,而传统切割算法遇到复杂背景图片往往就捉襟见肘了(见下图),这个时候,我们就需要有能力把复杂前后景的图片划分为各个层级图层,再交给切割算法去处理,拿到我们期望的结构信息. 经过传统切割算法处理,会无法获取图片结构信息,最终只会当成一张图…
起因: 1. 双目立体视觉中双目深度估计是非常重要且基础的部分,而传统的立体视觉的算法基本上都在opencv中有相对优秀的实现.同时考虑了性能和效率.因此,学习使用opencv接口是非常重要的. 2. 但对一个工具使用到一定程度后,有时候需要进行内置算法的改进,此时需要对opencv及外部依赖模块进行重编译. 双目深度估计传统算法流程: A. 固定相机对(严格固定!),制作高精度棋盘格,挑选合适光源,选择合适的拍摄角度对棋盘格进行拍摄取样 B. 使用matlab或opencv单目标定两个相机,采…
Deep learning for visual understanding: A review 视觉理解中的深度学习:回顾 ABSTRACT: Deep learning algorithms are a subset of the machine learning algorithms, which aim at discovering multiple levels of distributed representations. Recently, numerous deep learni…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…
https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学课的期末读书报告,我选择的主题是「分析深度学习中的各个优化算法」.在此前的工作中,自己通常就是无脑「Adam 大法好」,而对算法本身的内涵不知所以然.一直希望能抽时间系统的过一遍优化算法的发展历程,直观了解各个算法的长处和短处.这次正好借着作业的机会,补一补课. 本文主要借鉴了 @Juliuszh…
AFM:Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks 模型入上图所示,其中sparse iput,embedding layer,pair-wise interaction layer都和FM一样,后面加入了一个attention net生成一个关于特征交叉项的权重,将FM原来的二次项累加变成加权累加.这里的attention net其实…
包括: 理解卷积神经网络 使用数据增强缓解过拟合 使用预训练卷积网络做特征提取 微调预训练网络模型 可视化卷积网络学习结果以及分类决策过程 介绍卷积神经网络,convnets,深度学习在计算机视觉方面广泛应用的一个网络模型. 卷积网络介绍 在介绍卷积神经网络理论以及神经网络在计算机视觉方面应用广泛的原因之前,先介绍一个卷积网络的实例,整体了解卷积网络模型.用卷积网络识别MNIST数据集. from keras import layers from keras import models mode…
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There are many interesting recent development in deep learning…The most important one, in my opinion, is adversarial training (also called GAN for Generativ…
https://blog.csdn.net/LSG_Down/article/details/81327072 将文本数据处理成有用的数据表示 循环神经网络 使用1D卷积处理序列数据 深度学习模型可以处理文本序列.时间序列.一般性序列数据等等.处理序列数据的两个基本深度学习算法是循环神经网络和1D卷积(2D卷积的一维模式). 文本数据 文本是最广泛的序列数据形式.可以理解为一系列字符或一系列单词,但最经常处理的是单词层面.自然语言处理的深度学习是应用在单词.句子或段落上的模式识别:就像计算机视觉…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…