梯度下降算法和线性回归算法比较如图: 对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即: 我们刚刚使用的算法,有时也称为批量梯度下降.实际上,在机器学习中,通常不太会给算法起名字,但这个名字”批量梯度下降”,指的是在梯度下降的每一步中,我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有…
当我们对一个较为复杂的模型(例如神经网络)使用梯度下降算法时,可能会存在一些不容易察觉的错误,意味着,虽然代价看上去在不断减小,但最终的结果可能并不是最优解.为了避免这样的问题,我们采取一种叫做梯度的数值检验(Numerical Gradient Checking)方法.这种方法的思想是通过估计梯度值来检验我们计算的导数值是否真的是我们要求的. 对梯度的估计采用的方法是在代价函数上沿着切线的方向选择离两个非常近的点然后计算两个点的平均值用以估计梯度.即对于某个特定的…
这是代价函数的样子,等高线图,则可以看出在三维空间中存在一个使得…
一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化! 机器学习主要包括监督学习…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
一.准备工作 从网站上将编程作业要求下载解压后,在Octave中使用cd命令将搜索目录移动到编程作业所在目录,然后使用ls命令检查是否移动正确.如: 提交作业:提交时候需要使用自己的登录邮箱和提交令牌,如下: 二.单变量线性回归 绘制图形:rx代表图形中标记的点为红色的x,数字10表示标记的大小. plot(x, y, ); % Plot the data 计算代价函数(Cost Funtion):迭代次数1500,学习速率0.01.  iterations = 1500; alpha = 0.…
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:"Negative Class",1:"Possitive Class". 逻辑回归的预测函数表达式hθ(x)(hθ(x)>=0 && hθ(x)<=1): 其中g(z)被称为逻辑函数或者Sigmiod函数,其函数图形如下: 理解预测函数hθ(x)的…
[1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果.监督学习的训练集要求包括输入输出,也可以说是特征和目标.训练集中的目标是由人标注的.常用于:训练神经网络.决策树.回归分析.统计分类 无监督学习:输入数据没有被标记,也没有确定的结果.样本数据类别未知,需要根据样本间的相似性对样本集进行分类,试图使类内差距最小化,…
一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); %找到未通过学生的序号向量 plot(X(pos,),X(pos,),,); %使用+绘制通过学生 hold on; plot(X(neg,),X(neg,),); %使用o绘制未通过学生 % Put some labels hold on; % Labels and Legend xlabel('E…
一.随机梯度下降算法 之前了解的梯度下降是指批量梯度下降:如果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法. 在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价: 随机梯度下降算法为:首先对训练集随机“洗牌”,然后: 下面是随机梯度下降算法的过程以及和批量梯度下降算法的异同: 随机梯度下降算法是先只对第1个训练样本计算一小步的梯度下降,即这个过程包括调参过程,然后转向第2个训练样本,对第2个训练样本计算一小步的梯度下降,这个过程也包括调参…