ROIAlign, ROIPooling及ROIWarp对比】的更多相关文章

RoI Pooling 实现从原图ROI区域映射到卷积区域最后pooling到固定大小的功能,然后通过池化把该区域的尺寸归一化成卷积网络输入的尺寸. ROIAlign 上面RoI Pooling从原图ROI映射到卷积区域,即原图ROI与特征图ROI之间的映射,使用了stride间隔的取整,使得特征图ROI再映射回原图ROI的时候有stride的误差.尤其经过最大值池化后的特征与原ROI之间的空间不对齐就更加明显了. 因此,ROIAlign从原图到特征图直接的ROI映射直接使用双线性插值,不取整,…
Mask R-CNN 论文Mask R-CNN(ICCV 2017, Kaiming He,Georgia Gkioxari,Piotr Dollár,Ross Girshick, arXiv:1703.06870) 这篇论文提出了一个概念简单,灵活,通用的目标实例分割框架,能够同时检测目标并进行实例分割.在原Faster R-CNN基础上添加了object mask分支与原目标检测任务分支并列.速度大约5 fps.另外,Mask R-CNN也很容易扩展到其它的任务,比如人体姿态评估. 原Fas…
在论文是在Faster R-CNN的基础上的改进 ,实现的效果有: 目标检测:能够在输入图像中绘制出目标的边界框,预测目标位置 目标分类:判别出该划定边界的目标的类别是什么,如人.车.猫和狗等类别 像素级目标分割:(这就是其比Faster R-CNN多出的一个功能)能够在像素层面上对目标进行区分,将目标和背景区分开来,并使用不同的颜色进行标记 如Faster R-CNN的检测结果为: 而mask R-CNN的检测结果为: 可见mask R-CNN还能够将框中具体的目标部分使用同种颜色标记出来 m…
一).RoIPooling 这个可以在Faster RCNN中使用以便使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25 2)假定原图中有一region proposal,大小为665*665,这…
一.RoIPooling与RoIAlign 1.1.RoIPooling 通过对Faster RCNN的学习我妈了解的RolPooling可以使生成的候选框region proposal映射产生固定大小的feature map 先贴出一张图,接着通过这图解释RoiPooling的工作原理 针对上图 1)Conv layers使用的是VGG16,feat_stride=32(即表示,经过网络层后图片缩小为原图的1/32),原图800*800,最后一层特征图feature map大小:25*25 2…
faster-rcnn的github源码中是round四舍五入 但kaiming he的ppt是直接取整 1.讲roi-align和roi-pooling区别并且详细阐述roi-align过程的博客:http://blog.leanote.com/post/afanti/b5f4f526490b,此博主还有另外一篇在rfcn中 使用roi-align的博客:http://blog.leanote.com/post/afanti/Position-Sensitive 2.具体讲解roi-align…
YOLO.SSD.FPN.Mask-RCNN检测模型对比 一.YOLO(you only look once) YOLO 属于回归系列的目标检测方法,与滑窗和后续区域划分的检测方法不同,他把检测任务当做一个regression问题来处理,使用一个神经网络,直接从一整张图像来预测出bounding box 的坐标.box中包含物体的置信度和物体所属类别概率,可以实现端到端的检测性能优化 原理如下: 输入一张图片,图片中包含N个object,每个object包含4个坐标(x,y,w,h)和1个lab…
测试方法 为了对Ignite做一个基本了解,做了一个性能测试,测试方法也比较简单主要是针对client模式,因为这种方法和使用redis的方式特别像.测试方法很简单主要是下面几点: 不作参数优化,默认配置进行测试 在一台linux服务器上部署Ignite服务端,然后自己的笔记本作客户端 按1,10,20,50,100,200线程进行测试 测试环境说明 服务器: [09:36:56] ver. 1.7.0#20160801-sha1:383273e3 [09:36:56] OS: Linux 2.…
首先说明下为什么写这篇文章,网上有许多博客也是介绍I2C驱动在linux上移植的实现,但是笔者认为他们相当一部分没有分清所写的驱动时的驱动模型,是基于device tree, 还是基于传统的Platform模型,有些文章只是把代码移植到平台上调试测试下,并没有理清内部逻辑调用关系,所以觉得有必要把两种驱动模型阐述剖析清楚,本文阅读者必须以在单片机上调试过IIC总线为前提,能够分析从芯片datasheet和其工作原理和总线的基本操作,虽然I2C硬件体系结构比较简单,但是I2C体系结构在Linux中…
KVM 环境下MySQL性能对比 标签(空格分隔): Cloud2.0 [TOC] 测试目的 对比MySQL在物理机和KVM环境下性能情况 压测标准 压测遵循单一变量原则,所有的对比都是只改变一个变量的前提下完成 测试方式 以物理机MySQL为基准,分别做两次测试 测试IO相关参数(writethrough, innodb flush method) 测试CPU相关参数(NUMA Balancing) 测试环境 CPU:Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10…