原文地址 本文内容 软件 步骤 控制相关性 总结 参考资料 本文介绍如何用带 Apache Mahout 的 MapR Sandbox for Hadoop 和 Elasticsearch 搭建推荐引擎,只需要很少的代码. This tutorial will give step-by-step instructions on how to: 使用的电影评分数据位于 http://grouplens.org/datasets/movielens/ 使用 Apache Mahout 的协同过滤(c…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
Other CentOS 7.1 Released: Installation Guide with Screenshots A Git Style Guide Recommender System with Mahout and ElasticSearch Best Practices for High Performing and Efficient Flash Video Start contributing to Docker in 5 easy steps Web More Optim…
(1)哪些不是中台,而是应该叫平台 做开发,有所谓的三层技术架构:前端展示层.中间逻辑层.后端数据层.我们现在讲的中台不在这个维度上. 做开发,还有所谓的技术中间件.一开始我们没有中间件的概念,只有操作系统.数据库这些简单玩意,后来有了所谓的分布式计算,才有了所谓的中间件.如分布式组件容器(如EJB容器/COM容器),如分布式事务(有了分布式事务协调中间件),如需要在分布式应用之间传递数据就有了分布式消息队列....从而,中间件成了一个独立市场.但是,我们现在讲的中台也不在这个维度上. 现在到了…
基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序.经典算法包括聚类.分类.协同过滤.进化编程等等,并且,在 Mahout 的最近版本中还加入了对 Apache Hadoop 的支持,使这些算法可以更高效的运行在云计算环境中. 2.Taste简介 Taste 是 Apache Mahou…
一.推荐系统概述 为了解决信息过载和用户无明确需求的问题,找到用户感兴趣的物品,才有了个性化推荐系统.其实,解决信息过载的问题,代表性的解决方案是分类目录和搜索引擎,如hao123,电商首页的分类目录以及百度,360搜索等.不过分类目录和搜索引擎只能解决用户主动查找信息的需求,即用户知道自己想要什么,并不能解决用户没用明确需求很随便的问题.经典语录是:你想吃什么,随便!面对这种很随便又得罪不起的用户(女友和上帝),只能通过分析用户的历史行为给用户的兴趣建模,从而主动给用户推荐能够满足他们兴趣和需…
本章包含以下内容: 首先看一下实战中的推荐系统 推荐引擎的精度评价 评价一个引擎的准确率和召回率 在真实数据集:GroupLens 上评价推荐系统 我们每天都会对喜欢的.不喜欢的.甚至不关心的事情有很多观点.这些事情往往发生的不知不觉.你在收音机上听歌,因为它容易记住或者因为听起来可怕而关注它 — 又或者根本不去关注它.同样的事情有可能发生在T恤衫,色拉,发型,滑雪胜地,面孔,电视节目. 尽管人们的爱好差异很大,但他们仍然遵循某种模式.人们倾向于喜欢一些事物,这些事物类似于他们自己喜欢的其他事物…
通过Mahout构建推荐系统时,假设我们须要添�某些过滤规则(比方:item的创建时间在一年以内),则须要用到IDRescorer接口,该接口源代码例如以下: package org.apache.mahout.cf.taste.recommender; /**  * <p>  * A {@link Rescorer} which operates on {@code long} primitive IDs, rather than arbitrary {@link Object}s.  * …