首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
第九次作业——K-means算法应用:图片压缩
】的更多相关文章
使用K均值算法进行图片压缩
K均值算法 上一期介绍了机器学习中的监督式学习,并用了离散回归与神经网络模型算法来解决手写数字的识别问题.今天我们介绍一种机器学习中的非监督式学习算法--K均值算法. 所谓非监督式学习,是一种与监督式学习相对的算法归类,是指样本并没有一个与之对应的"标签".例如上一期中的识别手写数字照片的例子,样本是照片的像素数据,而标签则是照片代表的数字.非监督式学习因为没有这个标签,因此就没有对样本的一个准确的"答案".非监督式学习主要是用来解决样本的聚类问题. K…
KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 4.训练过程:没有明显的前期训练过程,属于memory-based learning 有明显的前期训练过程 5.K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label…
K-Means算法:图片压缩
#读取实例图片# from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt china=load_sample_image("china.jpg") plt.imshow(china) plt.show() print(china.shape) #观察图片数据格式# print(china.dtype) print(c…
4.K均值算法应用
一.课堂练习 from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_sample_image #导入图片数据 import PIL #引入PIL,但是下载不下来,如果没有的话,载入图片会报错 import sys china=load_sample_image("china.jpg") plt.imsh…
4.K均值算法--应用
1. 应用K-means算法进行图片压缩 读取一张图片 观察图片文件大小,占内存大小,图片数据结构,线性化 用kmeans对图片像素颜色进行聚类 获取每个像素的颜色类别,每个类别的颜色 压缩图片生成:以聚类中收替代原像素颜色,还原为二维 观察压缩图片的文件大小,占内存大小 压缩前图片: 压缩2后图片: 2. 观察学习与生活中可以用K均值解决的问题. 从数据-模型训练-测试-预测完整地完成一个应用案例. 这个案例会作为课程成果之一,单独进行评分. 通过对汽车排量和功率来训练模型,然后按照总价进行划…
K-means算法
K-means算法很简单,它属于无监督学习算法中的聚类算法中的一种方法吧,利用欧式距离进行聚合啦. 解决的问题如图所示哈:有一堆没有标签的训练样本,并且它们可以潜在地分为K类,我们怎么把它们划分呢? 那我们就用K-means算法进行划分吧. 算法很简单,这么做就可以啦: 第一步:随机初始化每种类别的中心点,u1,u2,u3,--,uk; 第二步:重复以下过程: 然后 ,就没有然后了,就这样子. 太简单, 不解释.…
2017-2018-1 20179205《Linux内核原理与设计》第九周作业
<Linux内核原理与设计>第九周作业 视频学习及代码分析 一.进程调度时机与进程的切换 不同类型的进程有不同的调度需求,第一种分类:I/O-bound 会频繁的进程I/O,通常会花费很多时间等待I/O操作的完成:CPU-bound 是计算密集型,需要大量的CPU时间进行运算,使得其他交互式进程反应迟钝,因此需要不同的算法来使系统的运行更高效,以及CPU的资源最大限度的得到使用.第二种分类包括批处理进程(batch process):实时进程(real-time process)以及交互式进程…
【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as plt from os import listdir def makePhoto(returnMat,classLabelVector): #创建散点图 fig = plt.figure() ax = fig.add_subplot(111) #例如参数为349时,参数349的意思是:将画布分割成3行4…
从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…