除了实现机器学习算法之外,机器学习还包含许多其他内容.生产环境机器学习系统包含大量组件.无需自行构建所有内容,而是应该尽可能重复使用常规机器学习系统组件.通过了解机器学习系统的一些范例及其要求,可以明确实际需要哪些组件. 1- 静态训练与动态训练(Static vs. Dynamic Training) 从广义上讲,训练模型的方式有两种:静态模型 采用离线训练方式:只训练模型一次,然后使用训练后的模型一段时间. 易于构建和测试:使用批量训练和测试,对其进行迭代,直到达到良好效果. 仍然需要对输入…
原文链接:https://developers.google.com/machine-learning/crash-course/descending-into-ml/ 线性回归是一种找到最适合一组点的直线或超平面的方法. 1- 线性回归 线性回归是一种找到最适合一组点的直线或超平面的方法. 以数学形式表达:$y = mx + b$ y指的是试图预测的值 m指的是直线的斜率 x指的是输入特征的值 b指的是 y 轴截距 按照机器学习的惯例来书写此方程式: $y' = b + w_1x_1$ 2-…
1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learning crash-course):https://developers.google.com/machine-learning/crash-course/ 支持多语言,共25节课程,包含40多项练习,有对算法实际运用的互动直观展示,可以更容易地学习和实践机器学习概念. 官方预估时间大约15小时(实际花…
转自 飞鸟各投林 SVM(支持向量机) 支持向量机算法是诞生于统计学习界,同时在机器学习界大放光彩的经典算法. 支持向量机算法从某种意义上来说是逻辑回归算法的强化:通过给予逻辑回归算法更严格的优化条件,支持向量机算法可以获得比逻辑回归更好的分类界线.但是如果没有某类函数技术,则支持向量机算法最多算是一种更好的线性分类技术. 但是,通过跟高斯“核”的结合,支持向量机可以表达出非常复杂的分类界线,从而达成很好的的分类效果.“核”事实上就是一种特殊的函数,最典型的特征就是可以将低维的空间映射到高维的空…
//2019.07.26#scikit-learn数据挖掘工具包1.Scikit learn是基于python的数据挖掘和机器学习的工具包,方便实现数据的数据分析与高级操作,是数据分析里面非常重要的工具包.2.Scikit Learn是数据挖掘重要的工具包,其官网为http://scikit-learn.org,可以方便地进行进行相关用法的查询.3.scikit-learn是一种开源的工具包,其开源网址为http://github.com//scikit-learn/scikit-learn.#…
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学习入门01 - 框架处理(Framing) https://www.cnblogs.com/anliven/p/10252938.html 机器学习基本术语. 了解机器学习的各种用途. 机器学习入门02 - 深入了解机器学习 (Descending into ML) https://www.cnbl…
版权声明:小博主水平有限,希望大家多多指导.本文仅代表作者本人观点,转载请联系知乎原作者——BG大龍. 目录 1 什么是机器学习? 2 机器学习的3个步骤 3 李宏毅老师的机器学习课程 4 按“模型的不同学习理论”分,机器学习的模型可以分为有监督学习,半监督学习,无监督学习,迁移学习和强化学习. ——4.1[解读] 有监督学习(Supervised Learning) ————4.1.1 监督学习Supervised Learning-> 回归Regression ————4.1.2 监督学习S…
机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题.简单的说,k-近邻算法 采用了测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.控件复杂度高 适用数据范围:数值型和标称型 首先我们来理解它的工作原理: 存在一个样本数据集(训练集),并且我们知道每一数据与目标变量的对应关系,输入没有标签的新数…
本文将介绍如何采用卷积神经网络(CNN)来处理Fashion-MNIST数据集. 程序流程如下: 1.准备样本数据 2.构建卷积神经网络模型 3.网络学习(训练) 4.消费.测试 除了网络模型的构建,其它步骤都和前面介绍的普通神经网络的处理完全一致,本文就不重复介绍了,重点讲一下模型的构建. 先看代码: /// <summary> /// 构建网络模型 /// </summary> private Model BuildModel() { // 网络参数 float scale =…
MNIST机器学习入门 转自:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html?plg_nld=1&plg_uin=1&plg_auth=1&plg_nld=1&plg_usr=1&plg_vkey=1&plg_dev=1 这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手.如果你已经了解MNIST和softmax回归(softm…