Counting Bloom Filter】的更多相关文章

Counting Bloom Filter是 改进型,将记录标准的存在位0和1,扩展为计数器counter.记录有几个元素.插入加一,删除减一.多占几倍存储空间. 标准的Bloom Filter是一种简单的数据结构,只有插入,查询两个操作.不支持删除操作,所以静态集合上可以很好工作.如果集合经常变动,则不能用. 随机数据结构,利用位数组简洁地表示一个集合,并判断一个元素是否属于这个集合.存在错误率,可能把不属于集合的元素误认为属于集合(false positive).往篮子里捡白鸡蛋,可能捡了几…
Bloom Filter的中文翻译叫做布隆过滤器,是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难.如文章标题所述,本文只是做简单介绍,属于科普文章. 应用场景在正式介绍Bloom Filter算法之前,先来看看什么时候需要用到Bloom Filter算法.1. HTTP缓存服务器.Web爬虫等主要工作是判断一条URL是否在现有的URL集…
Bloom filter原理: https://en.wikipedia.org/wiki/Bloom_filter 推导过程结合博客: https://blog.csdn.net/jiaomeng/article/details/1495500 Counting bloom filter原理: https://blog.csdn.net/jiaomeng/article/details/1498283…
Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员,这种检测只会对在集合内的数据错判,而不会对不是集合内的数据进行错判,这样每个检测请求返回有“在集合内(可能错误)”和“不在集合内(绝对不在集合内)”两种情况,可见 Bloom filter 是牺牲了正确率换取时间和空间. 如需要判断一个元素是不是在一个集合中,我们通常做法是把所有元素保存下来,然后通过比较知道它是不是在集合内,链…
海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如…
学习一个东西首先要知道这个东西是什么,可以做什么,接着再了解这个东西有什么好处和优势,然后再学习他的工作原理.下面我们分别从这三点简单介绍一下bloom filter,以及和他的变种. What:在允许一定的错误率的情况下,用于判断一个元素是否属于一个集合,Bloom Filter可能会将一个不属于集合的元素误判为属于这个集合,即false positive.可以应用于检查一个URL是否已经被爬虫爬过.网络缓存共享.字符串匹配等等 Why:时间和空间效率较高(与hash比较) How: 存储元素…
算法背景 如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定.链表.树.散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存.很多时候要么是以时间换空间,要么是以空间换时间. 在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大.时间效率变低. 此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足…
1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.…
Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集 基本原理及要点: 对于原理来说很简单,位数组+k个独立hash函数.将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的.同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字.所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了.…
1. Bloom-Filter算法简介 Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在于集合的快速的概率算法.Bloom Filter有可能会出现错误判断,但不会漏掉判断.也就是Bloom Filter判断元素不再集合,那肯定不在.如果判断元素存在集合中,有一定的概率判断错误.因此,Bloom Filter不适合那些“零错误”的应用场合.而在能容忍低错误率的应用场合下,Bloom Fi…