本文测试的Spark版本是1.3.1 本文将在Spark集群上搭建一个简单的小型的电影推荐系统,以为之后的完整项目做铺垫和知识积累 整个系统的工作流程描述如下: 1.某电影网站拥有可观的电影资源和用户数,通过各个用户对各个电影的评分,汇总得到了海量的用户-电影-评分数据 2.我在一个电影网站上看了几部电影,并都为其做了评分操作(0-5分) 3.该电影网站的推荐系统根据我对那几部电影的评分,要预测出在该网站的电影资源库中,有哪些电影是适合我的,并推荐给我看 4.根据我的观影习惯和用户的一个个人信息…
1.简述 1.什么是ES6?ES6, 全称 ECMAScript 6.0,是 JavaScript 的下一个版本标准,2015年6月份发版.ES6的主要目的是为了解决 ES5 的先天不足. 2.了解ES和JS之间的关系 ES = ECMAScript 是一个动态脚本语言的'标准',JS = JavaScript是对ES的标准,默认,主流的'实现',由于商标权的问题,欧洲计算机协会制定的语言标准不能叫做JS,只能叫ES: ES6新标准的目的是:使得JS可以用来开发大型的Web应用,成为企业级开发语…
原博文出自于: http://blog.fens.me/hadoop-mapreduce-recommend/ 感谢! 用Hadoop构建电影推荐系统 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Big…
推荐算法在互联网行业的应用非常广泛,今日头条.美团点评等都有个性化推荐,推荐算法抽象来讲,是一种对于内容满意度的拟合函数,涉及到用户特征和内容特征,作为模型训练所需维度的两大来源,而点击率,页面停留时间,评论或下单等都可以作为一个量化的 Y 值,这样就可以进行特征工程,构建出一个数据集,然后选择一个合适的监督学习算法进行训练,得到模型后,为客户推荐偏好的内容,如头条的话,就是咨询和文章,美团的就是生活服务内容. 可选择的模型很多,如协同过滤,逻辑斯蒂回归,基于DNN的模型,FM等.我们使用的方式…
基于Mahout的电影推荐系统 1.Mahout 简介 Apache Mahout 是 Apache Software Foundation(ASF) 旗下的一个开源项目,提供一些可扩展的机器学习领域经典算法的实现,旨在帮助开发人员更加方便快捷地创建智能应用程序.经典算法包括聚类.分类.协同过滤.进化编程等等,并且,在 Mahout 的最近版本中还加入了对 Apache Hadoop 的支持,使这些算法可以更高效的运行在云计算环境中. 2.Taste简介 Taste 是 Apache Mahou…
本文介绍一个基于pytorch的电影推荐系统. 代码移植自https://github.com/chengstone/movie_recommender. 原作者用了tf1.0实现了这个基于movielens的推荐系统,我这里用pytorch0.4做了个移植. 本文实现的模型Github仓库:https://github.com/Holy-Shine/movie_recommend_system 1. 总体框架 先来看下整个文件包下面的文件构成: 其中: Params: 保存模型的参数文件以及模…
第一部分-电影网站: 软件架构: SpringBoot+Mybatis+JSP 项目描述:主要实现电影网站的展现 和 用户的所有动作的地方 技术选型: 技术 名称 官网 Spring Boot 容器 https://projects.spring.io/spring-boot/ Spring MVC MVC框架 http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#mvc MyBatis…
第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <pr…
第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说明几点 1.ALS 算法不需要自己实现,Spark MLlib 已经实现好了,可以自己 跟源码学习 花时间钻研,动手写,写代码 翻译论文 写博客 多下功夫 最新http://spark.apache.org/docs/latest/ml-guide.html spark1.6.3 spark.mll…
基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. 说明几点 1.数据来源是 testData 测试集的数据.这里面的用户,可能存在于训练集中,也可能是新用户.因此,这里要做处理. SparkStreaming + kakfa ## 开始Coding 步骤一:在streaming 包下,新建PopularMovies2 package com.csy…