前言 java多线程之间进行通信时,JDK主要提供了以下几种通信工具类.主要有Semaphore.CountDownLatch.CyclicBarrier.exchanger.Phaser这几个通讯类.下面我们来详细介绍每个工具类的作用.原理及用法. Semaphore介绍 Semaphore翻译过来是信号的意思.顾名思义,这个工具类提供的功能就是多个线程彼此"打信号".而这个"信号"是一个int类型的数据,也可以看成是一种"资源",用来限定线程…
安装教程:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/installation.md cityscapes训练:https://github.com/tensorflow/models/blob/master/research/deeplab/g3doc/cityscapes.md 遇到的坑: 1. 环境: - tensorflow1.8+CUDA9.0+cudnn7.0+annaconda3+p…
花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅. DeepLabv1 Semantic image segmentation with deep convolutional nets and fully connected CRFs link:https://arxiv.org/pdf/1412.7062v3.pdf 引言 DCNN在像素标记存在两个问题:信号下采用和空间不变性(invariance) 第一个…
多篇开源CVPR 2020 语义分割论文 前言 1. DynamicRouting:针对语义分割的动态路径选择网络 Learning Dynamic Routing for Semantic Segmentation 作者团队:中科院&国科大&西安交大&旷视 论文链接:https://arxiv.org/abs/2003.10401 代码链接:https://github.com/yanwei-li/DynamicRouting 近年来,大量的人工搜索网络被应用于语义分割.然而,以…
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区别是如何提高这些向量的分辨率,以及如何组合这些向量. 几种结构 全卷积网络FCN:上采样提高分割精度,不同特征向量相加.[3] UNET:拼接特征向量:编码-解码结构:采用弹性形变的方式,进行数据增广:用边界加权的损失函数分离接触的细胞.[4] SegNet:记录池化的位置,反池化时恢复.[3] P…
欢迎关注微信公众号:BaronTalk,获取更多精彩好文! 一. 前言 性能问题是导致 App 用户流失的罪魁祸首之一,如果用户在使用我们 App 的时候遇到诸如页面卡顿.响应速度慢.发热严重.流量电量消耗大等问题的时候,很可能就会卸载掉我们的 App.而往往获取用户的成本是高昂的,因此因为性能问题导致用户流失的情况是我们要极力避免的,做不好这一点是我们开发人员的失职. 去年我们团队完成了整个项目架构方面的重构(有兴趣的同学可以参考我之前的文章安居客 Android 项目架构演进与Android…
  最近在调研3D算法方面的工作,整理了几篇多视角学习的文章.还没调研完,先写个大概.   基于RGBD的语义分割的工作重点主要集中在如何将RGB信息和Depth信息融合,主要分为三类:省略. 目录 1.(ICCV2017)<RDFNet: RGB-D Multi-level Residual Feature Fusion for Indoor Semantic Segmentation> 2.(2018 Arxiv)RedNet:Residual Encoder-Decoder Networ…
论文: (DeepLabV1)Semantic image segmentation with deep convolutional nets and fully connected CRFs (DeepLabV2)DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (DeepLabV3)Rethinking Atrous C…
语义分割--全卷积网络FCN详解   1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测.这样做有3个问题: - 像素区域的大小如何确定 - 存储及计算量非常大 - 像素区域的大小限制了感受野的大小,从而只能提取一些局部特征 为什么需要FCN? 我们分类使用的网络通常会在最后连接几层全连接层,它会将原…
前言: 本文将介绍如何基于ProxylessNAS搜索semantic segmentation模型,最终搜索得到的模型结构可在CPU上达到36 fps的测试结果,展示自动网络搜索(NAS)在语义分割上的应用.   随着自动网络搜索(Neural Architecture Search)技术的问世,深度学习已慢慢发展到自动化设计网络结构以及超参数配置的阶段.尤其在AI落地的背景下,许多模型需要部署在移动端设备.依据不同设备(GPU, CPU,芯片等),不同的模型需求(latency, 模型大小,…