1.GAN的基本原理其实非常简单,这里以生成图片为例进行说明.假设我们有两个网络,G(Generator)和D(Discriminator).正如它的名字所暗示的那样,它们的功能分别是: G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z). D是一个判别网络,判别一张图片是不是“真实的”.它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片. 在训练过程中,生成网络G的目标…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…
概述:在前期的文章中,我们用TensorFlow完成了对手写数字的识别,得到了94.09%的识别准确度,效果还算不错.在这篇文章中,笔者将带领大家用GAN模型,生成我们想要的手写数字. GAN简介 对抗性生成网络(GenerativeAdversarial Network),由 Ian Goodfellow 首先提出,由两个网络组成,分别是generator网络(用于生成)和discriminator网络(用于判别).GAN网络的目的就是使其自己生成一副图片,比如说经过对一系列猫的图片的学习,g…
第一个GAN模型-生成手写数字 一.GAN的基础:对抗训练 形式上,生成器和判别器由可微函数表示如神经网络,他们都有自己的代价函数.这两个网络是利用判别器的损失记性反向传播训练.判别器努力使真实样本输入和伪样本输入带来的损失最小化,而生成器努力使它生成的为样本造成的判别器损失最大化. 训练数据集决定了生成器要学习模拟的样本类型,例如,目标是生成猫的逼真图像,我们就会给GAN提供一组猫的图像. 用更专业的术语来说,生成器的目标是生成符合训练数据集数据分布的样本.对计算机来说,图像只是矩阵:灰度图是…
生成对抗网络(Generative Adversarial Networks,GANs),由2014年还在蒙特利尔读博士的Ian Goodfellow引入深度学习领域.2016年,GANs热潮席卷AI领域顶级会议,从ICLR到NIPS,大量高质量论文被发表和探讨.Yann LeCun曾评价GANs是"20年来机器学习领域最酷的想法". Generative Adversarial Nets(GAN) Generative Adversarial Networks论文提出了一种通过对抗过…
前言 查询了一下关于 MVC 中的模型绑定,大部分都是关于如何使用的,以及模型绑定过程中的一些用法和概念,很少有关于模型绑定的内部机制实现的文章,本文就来讲解一下在 ASP.NET Core MVC 中模型绑定是如何实现的,以及它的一些其他用法. 模型绑定的用途 通常情况下,我们在使用 MVC 框架的时候不需要关注模型绑定的相关功能,因为它是集成到 MVC 框架内部的,当我们在浏览器访问一个地址的时候,无论是 GET 还是 POST 访问,在映射到 Action 的过程中 MVC 框架已经自动的…
TensorFlow常用的示例一般都是生成模型和测试模型写在一起,每次更换测试数据都要重新训练,过于麻烦, 以下采用先生成并保存本地模型,然后后续程序调用测试. 示例一:线性回归预测 make.py import tensorflow as tf import numpy as np def train_model(): # prepare the data x_data = np.random.rand(100).astype(np.float32) print (x_data) y_data…
模型事件在 Laravel 的世界中,你对 Eloquent 大多数操作都会或多或少的触发一些模型事件,下面这篇文章主要给大家介绍了关于Laravel模型事件的实现原理,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴. 前言 Laravel的ORM模型在一些特定的情况下,会触发一系列的事件,目前支持的事件有这些:creating, created, updating, updated, saving, saved, deleting, deleted, restoring, restor…
转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处理NLP问题时,怎么合理的表示词语就成了NLP领域中最先需要解决的问题. 因为语言模型的输入词语必须是数值化的,所以必须想到一种方式将字符串形式的输入词语转变成数值型.由此,人们想到了用一个向量来表示词组.在很久以前,人们常用one-hot对词组进行编码,这种编码的特点是,对于用来表示每个词组的向量…
0. introduction GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document processing两方面,包含图片.视频.诗歌.一些简单对话的生成等.由于文字在高维空间上不连续的问题(即任取一个word embedding向量不一定能找到其所对应的文字),GAN对于NLP的处理不如图像的处理得心应手,并且从本质上讲,图片处理相较于NLP更为简单(因为任何动物都可以处理图像,但只有人类可以…