数学&动态规划:期望DP】的更多相关文章

题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp  好题好题!! 直接考虑n到因子很难做,所以要研究从n到因子的一些性质. 如果一个数可以写成,p^c这样的形式,并且p是质数,那么如果把这个数进行上述的操作,他可以变成的形式必然是p^x(0<=x<=c),并且每个数的概率是平均的. 所以对于这样的数,我们可以得出dp方程,i表示第几次操作,j表示p^j. dp[…
题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) d[i] = ( d[1] + d[a2] + d[a3] + d[a4] ..... + d[i] + c) / c; (加c是因为每一个期望值都会加1,因为多出一步才变成它(即第一次从i到它的因子的那一步)) 把右边的dp[i] 移到左边 化简得 dp[i] =  ( d[1] + d[a2]…
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,游戏的目标是使所有灯都灭掉.但是当操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭…
Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付k元钱.现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. Input 一行,一个数字N,  N<=10000 Output 要付出多少钱. 保留二位小数 题解: 挺神的一道期望 $DP$. 令 $f_{i}$ 表示已经有 $…
资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空间(\(\Omega\)):一个随机试验的所有可能的结果的全体,即\(\Omega=\{\omega\}\). 事件(\(A\)):某一类结果,即\(A\subset\Omega\). 基本事件(\(s\)):各个互斥的事件即为基本事件. 我们借助样本空间S来定义概率.样本空间是基本事件的集合. 概…
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题:中国放弃参加IOI2018的概率是多少?理性的回答:趋近于0:asuldb的回答:和他NOIP AK的概率差不多:按照初中的观点:1/2(有可能放弃,有可能不放弃),所以他有挺大的可能AK NOIP啦. 有一次期中考试做过一道题:小明的班里有3/4的人学数学,1/4人学英语,问小明学数学的概率是多少…
高斯消元可以解决一系列DP序混乱的无向图上(期望)DP DP序 DP序是一道DP的所有状态的一个排列,使状态x所需的所有前置状态都位于状态x前: (通俗的说,在一个状态转移方程中‘=’左侧的状态应该在‘=’右侧的所有状态之后) 于是往往只有按DP序转移状态,才可以保证每个状态值的正确性 一道DP的状态序不是唯一的 常见的有: 某些DAG上dp按拓扑序转移: 某些树上DP先转移x点的子树,后转移x: 某些树上DP先转移x,后转移x点的子树: 线性DP左到右或右到左: 区间DP小到大: 某些记忆化搜…
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门动态规划的真正意义. 奶萌兔的温馨提示:建议先理解dfs哦~(本文以一种较为新奇的方式解释DP) 动态规划 那什么是动态规划? 来问问神奇的奶萌兔吧(强行盗梗)! (奶萌兔来给你讲解啦~虽然还在睡觉=w=) 动态规划(英语:Dynamic programming,简称DP)是一种在数学.管理科学.计…
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之j赢i),连边从赢者向输者,从而得到一个有向完全图. 2.对于其中点数>1的强连通分量再次进行过程1,直至不存在点数>1的强连通分量为止. 给定n和p,求游戏总场次的期望.2<=n<=2000. [算法]数学概率,期望DP [题解]答案只和点数有关,设ans(n)表示n个点游戏总场次的…
题目大意: 一个人受雇于某公司要找出某个软件的bugs和subcomponents,这个软件一共有n个bugs和s个subcomponents,每次他都能同时随机发现1个bug和1个subcomponent,问他找到所有的bugs和subcomponents的期望次数. 这道题目要用期望dp来进行统计 假设已经找到i个bug和j个subcomponents,这个状态记为dp[i][j],那么下次查找会出现4种状态:dp[i][j],dp[i+1][j],dp[i][j+1],dp[i+1][j+…