「JSOI2015」圈地】的更多相关文章

「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于所有的墙,连两条边,连接起墙两边的房子,容量就是修墙的费用,然后直接用权值和 - 最小割就是最大收益. 参考代码: #include <cstring> #include <cstdio> #define rg register #define file(x) freopen(x&qu…
「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈希,这样我们就可以通过哈希,在 \(O(n ^ 2)\) 时间内判断原正方形中是否存在某一类型的某一大小的子正方形. 但是如果我们枚举边长,复杂度就会达到 \(O(n ^ 3)\) 级别,显然过不了. 考虑优化:我们发现对于任意一种类型的正方形,它把最外面一圈去掉之后还是满足原来的性质,所以我们可以…
「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然后每一段长度 \(\frac{n}{k}\) 最后取最小的. 把这个思想运用到一般情况:如果分出来两段长短不一,那么长的只会比短的那个长度多 \(1\) ,再仔细想想,所有段只会有两种不同的长度 \(\lfloor \frac{n}{k} \rfloor, \lceil \frac{n}{k} \r…
「JSOI2015」isomorphism 传送门 我们还是考虑树哈希来判同构. 但是我们需要使用一些特殊的手段来特殊对待假节点. 由于是无向树,我们首先求出重心,然后以重心为根跑树哈希. 此处我们不计算假节点的个数对子树大小的贡献.需要注意的是无向树可能有两个重心. 树哈希的时候,假节点儿子的哈希值也直接向上贡献(因为假节点有且只有一个儿子). 这样我们就可以求出一颗无向树的简化树的哈希值,之后的问题就轻松解决了. 参考代码: #include <algorithm> #include &l…
「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路就可以求出第一问了. 接下来考虑第二问. 我们在最短路图上面跑 \(\text{DP}\) 我们把所有线路按照 \(dis\) 排序,然后用距离为 \(dis - 1\) 的线路来更新. 我们发现如果一条最短路为 \(d\) 的线路上出现了一个最短路为 \(d\) 的点,那么显然我们不会在这里上车,…
「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示当前方案中,至少不用 \(k\) 种颜色,至少不涂 \(i\) 行.至少不涂 \(j\) 列. 然后直接组合数算(式子不难看懂),最后容斥即可. 那么写出来就是: \[ ans = \sum_{i = 0}^n \sum_{j = 0}^m \sum_{k = 0}^c (-1)^{i + j +…
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个点开两个 bitset 维护它与其他点的连通性,这个可以通过拓扑排序预处理. 然后就枚举每一条边,拿两个端点的两个 bitset 与一下即可判断出这条边是否可以删去. 参考代码: #include <cstdio> #include <bitset> #define rg regist…
「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \(b_j \times out_i\) 的花费. 我们有一种 贪心策略就是说把所有套娃按 \(b\) 从大到小排序,然后每次找一个 \(out\) 最大的让它套. 我们可以这么证明正确性: 对于四个套娃 \(i, j, k, l\) ,假设 \(b_i > b_j, out_k > out_l\)…
「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x - 1} + p \times (1 - p) ^ {s + x - 1} + p \times (1 - p) ^ {2s + x - 1} + \cdots + p \times (1 - p) ^ {ns + x - 1} \] 根据等比数列求和公式以及极限的相关计算,不难求出: \[ P =…
「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是看自己选中的子树中和没选的子树中是否存在两个值相等的,这样它们就可以通过互换来达到另一种方案,值得注意的是如果选了一个值为 \(0\) 的子树就肯定可以多一种方案出来,因为这颗子树选或不选都是满足最优的. 这里有个小问题:交到BZOJ上面去它会提示你 sort 没有声明,此时需要 #include…
「JSOI2015」送礼物 传送门 看到这题首先想到分数规划. 我们发现对于当前区间,如果它的最大值和最小值不是分居区间的两个端点的话,那么我们显然可以把两端多出去的部分舍掉,因为,在区间最大值最小值都不变的情况下,区间肯定是越短越优的. 但是要注意一点就是区间长度也是有下界的. 所以说我们就先处理所有区间长度为下界 \(L\) 的情况,然后再对区间长度位于 \([L + 1, R]\) 的区间做处理. 二分答案 \(mid\) ,假设当前区间是 \([l, r]\) 那么就有: \[ \fra…
「JSOI2015」子集选取 传送门 看到这个数据范围,就知道肯定是要找规律. 如果把集合看成一个长度为 \(n\) 的 \(01\) 串, \(0\) 表示没有这个元素, \(1\) 表示有这个元素, 那么我们可以发现对于题中的约束关系,不同位上的 \(01\) 之间不会互相影响. 那么我们只需要对于只有一位也就是 \(n = 1\) 的情况计算出方案(记为 \(x\))那么最后的答案就是 \(x ^ n\) . 现在考虑如何计算 \(x\) . 根据题目的限制,不难发现每一行都是一个全是 \…
「JSOI2015」字符串树 传送门 显然可以树上差分. 我们对于树上每一条从根出发的路径都开一 棵 \(\text{Trie}\) 树,那么我们就只需要在 \(\text{Trie}\) 树中插入一个字符串时把经过的节点都加 \(1\) 就好了,但是直接开空间会炸掉所以加一个可持久化. 还有一个小问题:我们读入的时候,如果用 char* 来存一条边上的字符串,那么每次都要用不同的 char[] 来传值,不然你就会发现每次的边的值都没变,可能是指针的一些原因吧. #include <cstrin…
「JSOI2015」最大公约数 传送门 考虑先枚举区间左端点, 然后我们会发现所有可能的区间虽然有 \(O(n)\) 个,但是本质不同的区间 \(\gcd\) 只有 \(\log n\) 级别,而且是从左端点往右呈阶梯状递减的. 所以说我们可以对于这 \(\log n\) 种不同的 \(\gcd\) 都算一遍答案. 具体来说就是二分出最远的那个可行右端点. 然后区间 \(\gcd\) 用 \(\text{ST}\) 表维护一下即可. 参考代码: #include <algorithm> #in…
「HNOI2018」转盘 现场推出了大部分结论但是只写了 \(40\) 分暴力,被贺指导踩爆,现在还有点怀念 HNOI2018 贺指导对着镜子荒野行动的日子,那几天他云球迷瞎**指点篮球,被送上指导称号一个. 解题思路: 可以大力证明一定存在一种最优解只需要走一圈,假设存在一个最优解在某个时刻已经走了一圈回到出发点还剩下一些点没有被标记,那么最终还需要走到这些点标记一遍,这样的时间开销和在需要被标记的点之前等到它可以再走是等价的,所以一定存在一种最优解是在起始点等若干时刻然后一遍走完的. 于是可…
「CTSC2016」单调上升路径 解题思路:根据提示可以得到答案的下界是 \(n - 1\) ,然后打表发现这个下界好像一定可以取到. 事实上考虑 \(n\) 个点完全图的边数是 \(\frac{n(n-1)}{2}\), 如果 \(n\) 是偶数,那么可以把边成 \(n-1\) 组,每一组 \(\frac{n}{2}\) 条边,并且每组的边都不在端点相交,如果从小到大安排上边权,显然每一组只能走一条边,答案是 \(n-1\) . 构造不在端点相交可以单独拿出一个点 \(x\) 放在中间,其他点…
一.故事背景 现在很多人都喜欢玩文艺,特别是我身边的UI们,拍照一分钟修图半小时.就是为了能够在朋友圈显得逼格高,不过的确是挺好看的,修图的软件太多了就不多说了,而且一般都没有水印啥的.相比较短视频有一个比较有逼格的编辑工具「Vue」个人已经用了很长时间了,拍出来的视频借助强大滤镜真的很好看,显得逼格也高,更重要的是他有我最喜欢的功能就是可以添加视频背景音乐,选择自己喜欢的音乐,然后还可以编辑这段背景音乐,反正我个人觉的这个是我最喜欢用的产品了.但是好用的东西必定有它不好的地方,因为他真的很强大…
#2008. 「SCOI2015」小凸想跑步   题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n nn 边形,N NN 个顶点按照逆时针从 0∼n−1 0 \sim n - 10∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为 P PP 点.将 P PP 点与 n nn 个顶点各连一条边,形成 N NN 个三角形.如果这时 P PP 点,0 00 号点,1 11 号点形成的三角形的面积是 N NN 个三角形中最小的一个,小凸则认为这是一次正确…
#2007. 「SCOI2015」国旗计划   题目描述 A 国正在开展一项伟大的计划 —— 国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了 N NN 名优秀的边防战上作为这项计划的候选人. A 国幅员辽阔,边境线上设有 M MM 个边防站,顺时针编号 1 11 至 M MM.每名边防战士常驻两个边防站,并且善于在这两个边防站之间长途奔袭,我们称这两个边防站之间的路程是这个边防战士的奔袭区间.N NN 名边防…
前面我们以相同的方式从数据分析师的视角介绍了Sqlserver,本系列亦同样地延续下去,同样是挖掘数据分析师值得使用的Azure云平台的功能.因云平台功能太多,笔者所接触的面也十分有限,有更专业的读者欢迎补充. 对云服务的一点点小认识 笔者接触Azure云时间不长,因没有IT背景,故对各大云市场也只能是浅尝即止,有关注Excel催化剂插件的读者们,也应该对笔者使用其他云市场有一些的了解. Excel催化剂的自动更新机制是放到阿里云上完成的,对应的云服务是构建云服务器(比虚拟主机要高级,可以完全自…
作者 | pk 哥 来源公众号 | Python知识圈(ID:PythonCircle) APP 也有文字转换为语音的功能,虽然听起来很别扭,但是基本能解决长辈们看不清文字或者眼睛疲劳,通过文字转换为语音来获取信息. 我们用 Python 能否实现文字转语音呢,可以的,百度有个语音接口,可以在 Python 中直接调用,甚至提供了多种声音选择,当然可以选择萌妹子的声音. 安装百度接口 通过 pip 命令直接安装( -i 后面是豆瓣的镜像,这样下载安装速度更快) pip3 install baid…
Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过这关,必须要让开关达到指定的状态.目标状态由一个长度为 \(n\) 的 \(01\) 数组 \(s\) 给出,\(s_i = 0\) 表示第 \(i\) 个开关在最后需要是关着的,\(s_i = 1\) 表示第 \(i\) 个开关在最后需要被打开. 然而作为闯关者,可怜和法海并不知道 \(s\).因…
LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\)中,因为\(a_{i} \equiv a_{i} \pmod Q\)这样避免了麻烦 然后呢我们发现每次把\((a_{i} + P) \% Q\)会走成一个圈,我们就要求从\(a_{i}\)开始数\(\lfloor \frac{T - 1- a_{i}}{P} \rfloor + 1\)个圈里\(b_{i}\)…
「BZOJ1412」[ZJOI2009] 狼和羊的故事 Description "狼爱上羊啊爱的疯狂,谁让他们真爱了一场:狼爱上羊啊并不荒唐,他们说有爱就有方向......" Orez听到这首歌,心想:狼和羊如此和谐,为什么不尝试羊狼合养呢?说干就干! Orez的羊狼圈可以看作一个n*m个矩阵格子,这个矩阵的边缘已经装上了篱笆.可是Drake很快发现狼再怎么也是狼,它们总是对羊垂涎三尺,那首歌只不过是一个动人的传说而已.所以Orez决定在羊狼圈中再加入一些篱笆,还是要将羊狼分开来养.…
「JSOI2013」游戏中的学问 传送门 考虑 \(\text{DP}\) 设 \(dp_{i, j}\) 表示将前 \(i\) 个人分成 \(j\) 个集合,并且第 \(i\) 个人在第 \(j\) 个集合的方案数. 转移就是: \[ dp_{i, j} = dp_{i - 1, j} \times (i - 1) + dp_{i - 3, j - 1} \times {i - 1 \choose 2} \times 2 \] 其中前面那一项就是加入一个人,感觉有点像第一类斯特林数递推式中的一…
Link Aeon 显然字典序最大就是把最小的字母放在最后 Business [动态规划] 简单dp dp[i][j]dp[i][j]dp[i][j]表示到第iii天,当前有jjj块钱,最后返还的钱最多为多少 完全背包转移 Celebration Description 有一个环 ,求把它分成三段,使得每一段内无重复元素,且三段长度可以作为某个三角形的三边的方案数. 一个拆分方案可以看作一个三元组 (a,b,c)(a,b,c)(a,b,c),其中 0<a<b<c≤n0lt alt b l…
「MoreThanJava」 宣扬的是 「学习,不止 CODE」,本系列 Java 基础教程是自己在结合各方面的知识之后,对 Java 基础的一个总回顾,旨在 「帮助新朋友快速高质量的学习」. 当然 不论新老朋友 我相信您都可以 从中获益.如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! 一.织布机 | 一切的开端 如今代表智能现代的计算机与老式织布机的血缘关系超乎你的想象.无论是摆在写字台上的 台式机.塞在口袋里的 掌上电脑.…
「MoreThanJava」 宣扬的是 「学习,不止 CODE」. 如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Hi~ 这里是 我没有三颗心脏,一个兴趣爱好广泛的 96 年 自由技术人. 都说九月十月是跳槽的高峰期 (也有金九银十的说法),所以 近期 计划出一些 面试求职 相关的文章,这里是系列的第二篇「高质量撰写简历指南」,手把手地说明了如何来编写一个高质量的简历,也算是学习分享,真心的希望对大家有所帮助,如果 觉得不错…
随想随记,主要是整活. 红色贝雷帽大爷会在校园不定期游走,遇见记得打招呼. 面食堂冰沙类饮品请快速解决或者边喝边搅,如果发现饮品甜度骤减请快速前往最近的垃圾桶扔掉. 关于散养猫小黄和小黑. 如果看见小黑在操场睡觉,可以小心地走过去,它说不定会趴在你脚上. 小黄很怕生,除非它找你,不要找它,避免不必要的疫苗开销. 请习惯每天早上或中午寝室开灯后宿管叫起床这件事.不妨留意一下宿管叫起床时的经过寝室的顺序,这可以给你争取到几分钟的闭目养神的时间:如果你所在寝室是顺序中的第一个,请在开灯后立即使用各种方…
记录全思路过程和正解分析.全思路过程很 navie,不过很下饭不是嘛.会持续更新的(应该). 「CF1521E」Nastia and a Beautiful Matrix Thought. 要把所有数容纳下就一定至少有,\(\sum \limits _{i = 1 \to k} a_i < n^2\).但这个限制太弱了可恶. 考虑一种构造,一排全放数字,一排隔一个放一个.感觉可以做到最优. 接下来考虑普适化的细节,即需要满足对角线数组不同. 全放数字的就直接往上怼,不够换下一个数字,顺序填即可.…