无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x\)为\(G\)的割点. 若对于\(e \in E\),从图中删去边\(e\)之后,\(G\)分裂为两个不连通的子图,则称\(e\)为\(G\)的割边. 对于很多图上问题来说,这两个概念是很重要的.我们将探究如何求解无向图的割点与割边. 预备知识 时间戳 图在深度优先遍历的过程中,按照每一个节点第一…