机器学习——HMM & CRF】的更多相关文章

整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 HMM CRF HMM和CRF对比 1.HMM算法 隐马尔可夫模型是用于标注问题的生成模型.有几个参数(ππ,A,B):初始状态概率向量ππ,状态转移矩阵A,观测概率矩阵B.称为马尔科夫模型的三要素. 马尔科夫三个基本问题: 概率计算问题:给定模型和观测序列,计算模型下观测序列输出的概率.–>前向后向算法 学习问题:已知观测…
目录 简介 隐马尔可夫模型(HMM) 条件随机场(CRF) 马尔可夫随机场 条件随机场 条件随机场的特征函数 CRF与HMM的对比 维特比算法(Viterbi) 简介 序列标注(Sequence Tagging)是一个比较简单的NLP任务,但也可以称作是最基础的任务.序列标注的涵盖范围是非常广泛的,可用于解决一系列对字符进行分类的问题,如分词.词性标注.命名实体识别.关系抽取等等. 对于分词相信看过之前博客的朋友都不陌生了,实际上网上已经有很多开源的中文分词工具,jieba.pkuseg.pyh…
HMM定义 1)隐马尔科夫模型 (HMM, Hidden Markov Model) 可用标注问题,在语音识别. NLP .生物信息.模式识别等领域被实践证明是有效的算法. 2)HMM 是关于时序的概率模型,描述由一个隐藏的马尔科夫链生成不可观测的状态随机序列,再由各个状态生成观测随机序列的过程. 3)隐马尔科夫模型随机生成的状态随机序列,称为状态序列:每个状态生成一个观测,由此产生的观测随机序列,称为观测序列.序列的每个位置可看做是一个时刻. 隐马尔科夫模型的贝叶斯网络 由于Z1,Z2,...…
本文参考自:http://blog.csdn.net/happyzhouxiaopei/article/details/7960876 这三个模型都可以用来做序列标注模型.但是其各自有自身的特点,HMM模型是对转移概率和表现概率直接建模,统计共现概率.而MEMM模型是对转移 概率和表现概率建立联合概率,统计时统计的是条件概率.MEMM容易陷入局部最优,是因为MEMM只在局部做归一化,而CRF模型中,统计了全局概率,在 做归一化时,考虑了数据在全局的分布,而不是仅仅在局部归一化,这样就解决了MEM…
Structured Learning 4: Sequence Labeling:https://www.youtube.com/watch?v=o9FPSqobMys HMM crf 李宏毅老师讲的很清楚明了,截图当笔记,偶尔回顾一下.大家可以去看…
练习使用的数据 diabetes.csv 备用百度网盘地址 输入变量与输出变量均为连续变量的预测问题是回归问题: 输出变量为有限个离散变量的预测问题成为分类问题: 其实回归问题和分类问题的本质一样,都是针对一个输入做出一个输出预测,其区别在于输出变量的类型. 分类问题是指,给定一个新的模式,根据训练集推断它所对应的类别(如:+1,-1),是一种定性输出,也叫离散变量预测: 回归问题是指,给定一个新的模式,根据训练集推断它所对应的输出值(实数)是多少,是一种定量输出,也叫连续变量预测. 举个例子:…
分词(Segment):中英文都存在分词的问题,不过相对来说,英文单词与单词之间本来就有空格进行分割,所以处理起来相对方便.但是中文书写是没有分隔符的,所以分词的问题就比较突出.分词常用的手段可以是基于字典的最长串匹配,据说可以解决85%的问题,但是歧义分词很难.另外就是当下主流的统计机器学习的办法,利用HMM/CRF这一类的模型解决   词性标注(Label):基于机器学习的方法里,往往需要对词的词性进行标注.标注的目的是,表征词的一种隐状态,隐藏状态构成的转移就构成了状态转移序列.例如:苏宁…
中科院nlpir和海量分词(http://www.hylanda.com/)是收费的. hanlp:推荐基于CRF的模型的实现~~要看语料,很多常用词会被分错,所以需要词库支撑.目前最友好的开源工具包应该是HanLP,基于词典,对各种实体词汇做了HMM,也提供了CRF模型.工程实现也不错,性能不是瓶颈.代码有相对完备的注释,文档也比较全,各种算法原理实现也有对应blog,自己研究和做二次开发都比较方便. 最近写了一款分词器,调研了不少文章的开源实现.最终定的方案是 Language Model…
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子  ,其中  代表句子中的第  个词语,则语句 W 以该顺序出现的概率可以表示为: 其中 ,  $p(w_n|w_1^{n-1}) = p(w_n|w_1,w_2,...,w_{n-1})$  ,  $ p(w_n|w_1^{n-1})$ 即为 Language Model 的参数,.通常参数的求解用方法是 N-gram 模型,最大熵模型,HMM,CRF…
FNLP是由Fudan NLP实验室的邱锡鹏老师开源的一套Java写就的中文NLP工具包,提供诸如分词.词性标注.文本分类.依存句法分析等功能. [开源中文分词工具探析]系列: 中文分词工具探析(一):ICTCLAS (NLPIR) 中文分词工具探析(二):Jieba 中文分词工具探析(三):Ansj 开源中文分词工具探析(四):THULAC 开源中文分词工具探析(五):FNLP 1. 前言 类似于THULAC,FNLP也是采用线性模型(linear model)作为基础分词模型.与对数线性模型…
nltk的全称是natural language toolkit,是一套基于python的自然语言处理工具集.自带语料库.词性分类库.自带分类分词等功能.强大社区支持.很多简单版wrapper 文本处理: preprocess -> 分词 tokenize ->make features,成为数字化表示的东西 -> ml方法产生label.targets 中文nlp - 分词 - 1.启发式:就像对着大辞典,今是一个单词吗,今天是个..,..~类似贪婪算法找拟合词  2.ml:HMM\C…
一.自然语言处理概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2)自然语言处理是研究语言能力和语言应用的模型,建立计算机(算法)框架来实现这样的语言模型,并完善.评测.最终用于设计各种实用系统. 3)研究问题(主要): 信息检索 机器翻译 文档分类 问答系统 信息过滤 自动文摘 信息抽取 文本挖掘 舆情分析 机器写作 语音识别 自然语言的困难: 场景的困难:语言的…
NLP知识结构概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2)自然语言处理是研究语言能力和语言应用的模型,建立计算机(算法)框架来实现这样的语言模型,并完善.评测.最终用于设计各种实用系统. 3)研究问题(主要): 信息检索 机器翻译 文档分类 问答系统 信息过滤 自动文摘 信息抽取 文本挖掘 舆情分析 机器写作 语音识别 研究模式:自然语言场景问题,数学算法,…
条件随机场真是把我给折磨坏了啊,本以为一本小小的<统计学习方法>攻坚剩下最后一章,心情还是十分愉悦的,打算一口气把它看完,结果真正啃起来真是无比的艰难啊,每一句对我都好像是天书一般,怎么这么多没有接触过的概念啊!什么无向图?什么最大团?搞什么鬼啊,真让人头大现在想想可能就是被这些概念吓到了当时,等你仔细的弄懂了它们是什么意思,理解起来难度就会小很多啦,所以,我决定先从概念开始说起,捋顺一下思路,至于条件随机场先表过不谈! 我们先来看一下整个大框架下,条件随机场在什么位置,让读者心中有数,知道自…
一.自然语言处理概述 1)自然语言处理:利用计算机为工具,对书面实行或者口头形式进行各种各样的处理和加工的技术,是研究人与人交际中以及人与计算机交际中的演员问题的一门学科,是人工智能的主要内容. 2)自然语言处理是研究语言能力和语言应用的模型,建立计算机(算法)框架来实现这样的语言模型,并完善.评测.最终用于设计各种实用系统. 3)研究问题(主要): 信息检索 机器翻译 文档分类 问答系统 信息过滤 自动文摘 信息抽取 文本挖掘 舆情分析 机器写作 语音识别 自然语言的困难: 场景的困难:语言的…
自然语言处理知识太庞大了,网上也都是一些零零散散的知识,比如单独讲某些模型,也没有来龙去脉,学习起来较为困难,于是我自己总结了一份知识体系结构,不足之处,欢迎指正.内容来源主要参考黄志洪老师的自然语言处理课程.主要参考书为宗成庆老师的<统计自然语言处理>,虽然很多内容写的不清楚,但好像中文NLP书籍就这一本全一些,如果想看好的英文资料,可以到我的GitHub上下载:  http://github.com/lovesoft5/ml  下面直接开始正文: 一.自然语言处理概述           …
朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM),  最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会证明 Logistic 与 MaxEnt 的等价性,接下来将从图模型的角度阐述几个模型之间的关系,首先用一张图总结一下几个模型的关系: Logistic(Softmax)  MaxEnt 等价性证明 Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
声明:本文主要是基于网上的材料做了文字编辑,原创部分甚少.參考资料见最后. 隐马尔可夫模型(Hidden Markov Model.HMM),最大熵马尔可夫模型(Maximum Entropy Markov Model,MEMM)以及条件随机场(Conditional Random Field,CRF)是序列标注中最经常使用也是最主要的三个模型.HMM首先出现.MEMM其次,CRF最后.三个算法主要思想例如以下: HMM模型是对转移概率和表现概率直接建模,统计共现概率. MEMM模型是对转移概率…
DDos攻击本质上是时间序列数据,t+1时刻的数据特点和t时刻强相关,因此用HMM或者CRF来做检测是必然!——和一个句子的分词算法CRF没有区别!注:传统DDos检测直接基于IP数据发送流量来识别,通过硬件防火墙搞定.大数据方案是针对慢速DDos攻击来搞定.难点:在进行攻击的时候,攻击数据包都是经过伪装的,在源IP 地址上也是进行伪造的,这样就很难对攻击进行地址的确定,在查找方面也是很难的.这样就导致了分布式拒绝服务攻击在检验方法上是很难做到的.领域知识见:http://blog.csdn.n…
基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角…
前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在graph model参数的学习中,则使用较多的是指数线性模型,本实验的CRF使用的是log-linear模型,实验内容请参考 coursera课程:Probabilistic Graphical Models中的assignmnet 7. 实验code可参考网友的:code实验对应的模型示意图如下: CR…
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小然而在图像识别等领域HMM依然起着重要的作用. 引言: 隐马尔科夫模型是马尔科夫链的一种,它…
摘要 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔科夫过程.其难点是从可观察的参数中确定该过程的隐含参数,然后利用这些参数来作进一步的分析.在早些年HMM模型被非常广泛的应用,而现在随着机器学习的发展HMM模型的应用场景越来越小,然而在图像识别等领域HMM依然起着重要的作用. 引言 隐马尔科夫模型是马尔科夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测…
http://blog.sina.com.cn/s/blog_605f5b4f010109z3.html 首先,CRF,HMM(隐马模型),MEMM(最大熵隐马模型)都常用来做序列标注的建模,像词性标注,True casing.但隐马模型一个最大的缺点就是由于其输出独立性假设,导致其不能考虑上下文的特征,限制了特征的选择,而最大熵隐马模型则解决了这一问题,可以任意的选择特征,但由于其在每一节点都要进行归一化,所以只能找到局部的最优值,同时也带来了标记偏见的问题(label bias),即凡是训练…
一.CRF的由来HMM->MEMM->CRF 二.HMM到MEMM MEMM打破了HMM的观测条件独立假设 三.MEMM到CRF CRF克服了MEMM的label bias problem问题 参考文献: [1][中文分词]条件随机场CRF [2][NLP]基于自然语言处理角度谈谈CRF(二)…
LR:Logistic 是 Softmax 的特殊形式,多以如果 Softmax 与 MaxEnt 是等价的,则 Logistic 与 MaxEnt 是等价的. HMM模型: 将标注看作马尔可夫链,一阶马尔可夫链式针对相邻标注的关系进行建模,其中每个标记对应一个概率函数.HMM是一种生成模型,定义了联合概率分布,其中 x 和 y 分别表示观察序列和相对应的标注序列的随机变量.为了能够定义这种联合概率分布,生成模型需要枚举出所有可能的观察序列,这在实际运算过程中很困难,因为我们需要将观察序列的元素…
本文转自:http://www.cnblogs.com/syx-1987/p/4077325.html 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0.018 路径1-2-1-2:0.06 路径1-1-2-2:0.066 由此可得最优路径为1-1-1-1 而实际上,在上图中,状态1偏向于转移到状态2,而状态2总倾向于停留在状态2,这就是所谓的标注偏置问题, 由于分支数不同,概率的分布不均衡,导致状态的转移存在不公平的情况. PS:标注偏置问题存在于最大…
HMM,MEMM,CRF模型之间关系密切,需看: 参考文献: http://www.cnblogs.com/kevinGaoblog/p/3874709.html http://baike.baidu.com/link?url=3BRZ5qo58-3MaGzPqI7zWhcqNY-0xfjUf79AMDLsv1gHK2JXp2lEZ53KuL56kmJVxlT0hTydmGHXnaAnFqoy1q…
转自http://blog.csdn.net/lskyne/article/details/8669301 路径1-1-1-1的概率:0.4*0.45*0.5=0.09 路径2-2-2-2的概率:0.018 路径1-2-1-2:0.06 路径1-1-2-2:0.066 由此可得最优路径为1-1-1-1 而实际上,在上图中,状态1偏向于转移到状态2,而状态2总倾向于停留在状态2,这就是所谓的标注偏置问题,由于分支数不同,概率的分布不均衡,导致状态的转移存在不公平的情况. PS:标注偏置问题存在于最…