概率检索模型:BIM+BM25+BM25F】的更多相关文章

概率排序原理 以往的向量空间模型是将query和文档使用向量表示然后计算其内容相似性来进行相关性估计的,而概率检索模型是一种直接对用户需求进行相关性的建模方法,一个query进来,将所有的文档分为两类 -- 相关文档.不相关文档,这样就转为了一个相关性的分类问题. 对于某个文档D来说,P(R|D)表示该文档数据相关文档的概率,则P(NR|D)表示该文档属于不相关文档的概率,如果query属于相关文档的概率大于不相关文档P(R|D)>P(RN|D),则认为这个文档是与用户查询相关相关的. 现在使用…
1. 概率排序原理 以往的向量空间模型是将query和文档使用向量表示然后计算其内容相似性来进行相关性估计的,而概率检索模型是一种直接对用户需求进行相关性的建模方法,一个query进来,将所有的文档分为两类 -- 相关文档.不相关文档,这样就转为了一个相关性的分类问题. 对于某个文档D来说,P(R|D)表示该文档数据相关文档的概率,则P(NR|D)表示该文档属于不相关文档的概率,如果query属于相关文档的概率大于不相关文档P(R|D)>P(NR|D),则认为这个文档是与用户查询相关相关的. 现…
几个符号意义: R:相关文档集 NR:不相关文档集 q:用户查询 dj:文档j 1/0风险情况 PRP(probability ranking principle):概率排序原理,利用概率模型来估计每篇文档和需求相关概率,然后对结果进行排序. 贝叶斯最优决策原理,基于最小损失风险作出决策,返回相关的可能性大于不相关的可能性的文档: 基于检索代价的概率排序原理: crrP(R|D) + crnP(NR|D) < cnrP(R|D) + cnnP(NR|D) 如何计算概率 文档d可以表示为向量(d1…
此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法.本文首先回顾了这一领域的主要思想,接着调研了当前的研究水平,最后展望某些有所希望的方向.从最简单的主题模型——潜在狄立克雷分配(Latent Dirichlet Allocation,LDA)出发,讨论了其与概率建模的联系,描述了用于主题发现的两种算法.主题模型日新月异,被扩展和…
概率主题模型简介 Introduction to Probabilistic Topic Models      转:http://www.cnblogs.com/siegfang/archive/2013/01/30/2882391.html   此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在大规模文档中的主题结构的算法.本文首先回顾了这一领域的主要思…
目录 LDA 主题模型 几个重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么确定LDA的topic个数? 如何用主题模型解决推荐系统中的冷启动问题? LDA 这里简单的介绍一下LDA的另一种身份,概率主题模型 隐含狄利克雷分布(Latent Dirichlet Allocation,简称LDA)隐含狄利克雷分布(英语:Latent Dirichlet allocation,简称LDA),是一种主题模型,它可以将文档集中每篇…
之前忘记强调重要的差异:链式法则的条件概率和贝叶斯网络的链式法则之间的差异 条件概率链式法则 P\left({D,I,G,S,L} \right) = P\left( D \right)P\left( {I\left| D \right.}\right)P\left( {G\left| {D,I} \right.} \right)P\left( {S\left| {D,I,G} \right.}\right)P\left( {L\left| {D,I,G,S} \right.} \right)"…
在本文中,基于Daphne Koller完成课程. PDM(ProbabilisticGraphiccal Models) 称为概率图模型. 以下分别说明3个词相应的意义. 概率 -给出了不确定性的明白量度. -给出了依据不确定性进行判断的有力工具. -利用数据结构,建立了进行学习的方法,解决十分大规模的问题. 图 这里主要用到2种概率图,用于表示依赖关系.如图1所看到的. 图1 1.Bayesiannetworks 贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DA…
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) 下面附上,上述实验的matlab代码.没有插入matlab选项,大家复制到matlab里面看吧.下次我用python实现吧 % PRML image de-noising clc; clear; close all; A=imread('a.jpg');%读入名字为a.jpg的图片 imshow(A…
本文是Xapian检索过程的分析,本文内容中源码比较多.检索过程,总的来说就是拉取倒排链,取得合法doc,然后做打分排序的过程. 1 理论分析 1.1  检索语法 面对不同的检索业务,我们会有多种检索需求,譬如:要求A term和B term都在Doc中出现:要求A term或者B term任意在Doc中出现:要求A term或者B term任意在Doc出现,并且C term不出现…...,用符号表示: A & B A || B (A || B) & ~C ( A & ( B ||…