前言 用Spark有一段时间了,但是感觉还是停留在表面,对于Spark的RDD的理解还是停留在概念上,即只知道它是个弹性分布式数据集,其他的一概不知 有点略显惭愧.下面记录下我对RDD的新的理解. 官方介绍  弹性分布式数据集. RDD是只读的.分区记录的集合.RDD只能基于在稳定物理存储中的数据集和其他已有的RDD上执行确定性操作来创建. 问题 只要你敢问度娘RDD是什么,包你看到一大片一模一样的答案,都是说这样的概念性的东西,没有任何的价值. 我只想知道 RDD为什么是弹性 而不是 不弹性,…
Spark Streaming揭秘 Day8 RDD生命周期研究 今天让我们进一步深入SparkStreaming中RDD的运行机制.从完整的生命周期角度来说,有三个问题是需要解决的: RDD到底是怎么生成的 具体执行的时候和Spark Core上的执行有所不同 运行之后对RDD如何处理,怎么对已有的RDD进行管理 今天主要聚焦于第一个问题. 从DStream开始 DStream类的注释很明确的说明了,DStream中包含以下内容: DStream依赖的其他DStream(第一个DStream是…
Sparkstreaming-共享变量-缓存RDD-到底是什么情况? sparkstreaming 多个 rdd_百度搜索 Spark Streaming中空RDD处理及流处理程序优雅的停止 - xuanlin的专栏 - 博客园 spark 两个rdd 合并_百度搜索 spark 广播变量 多级调用_百度搜索 Spark分布式编程之全局变量专题[共享变量] - 我是王者鑫的博客 - CSDN博客 Spark踩坑记:共享变量 - 琉璃块 - 博客园 Spark学习笔记之共享变量(五) [实践]sp…
预览 在高层次上,每一个Spark应用(application)都包含一个驱动程序(driver program),该程序运行用户的主函数(main function),并在集群上执行各种并行操作. Spark提供的主要抽象是一个弹性分布式数据集(resilient distributed dataset,简称RDD),它是在集群节点间进行分区的元素集合,可以并行操作.RDD是通过Hadoop文件系统中的文件创建或者由驱动程序中现有的集合转换得到的,用户可以要求Spark将RDD持久化到内存中,…
Spark操作算子本质-RDD的容错spark模式1.standalone master 资源调度 worker2.yarn resourcemanager 资源调度 nodemanager在一个集群中只能有一个资源调度,如果有两个资源调度的话,master和resourcemanager之间是不通信的,master分配某个资源,resourcemanager是不知道的一个application对应一个driver,driver是用来分配任务的 流程示意分布式文件系统(File system)加…
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常见的转化操作和行动操作 基本RDD 行动操作 不同 RDD 的类型转换 持久化 Spark学习笔记3--RDD(下) 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 向Spark传递函数 大部分 Spark 的转化操作和一部分行动操作,都需要传递函数后进行计算.如…
spark可以使用checkpoint来作为检查点,将rdd的数据写入hdfs文件,也可以利用本地缓存子系统. 当我们使用checkpoint将rdd保存到hdfs文件时,如果任务的临时文件长时间不删除,长此以往,hdfs会出现很多没有用的文件,spark也考虑到了这一点,因此,用了一些取巧的方式来解决这种问题. spark config: spark.cleaner.referenceTracking.cleanCheckpoints = 默认false 也就是说默认情况下,保存的文件一直都会…
一 简介 spark核心是RDD,官方文档地址:https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds官方描述如下:重点是可容错,可并行处理 Spark revolves around the concept of a resilient distributed dataset (RDD), which is a fault-tolerant colle…
我的代码实践:https://github.com/wwcom614/Spark 1.RDD是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集. 2.RDD在抽象上来说是一种元素集合,包含了数据.它是被分区的,分为多个分区,每个分区分布在集群中的不同节点上,从而让RDD中的数据可以被并行操作.(分布式数据集) 3.RDD通常通过Hadoop上的文件,即HDFS文件或者Hive表,来进行创建:有时也可以通过应用程序中的集合来创建. 4…
Spark编程模型(RDD编程模型) 下图给出了rdd 编程模型,并将下例中用 到的四个算子映射到四种算子类型.spark 程序工作在两个空间中:spark rdd空间和 scala原生数据空间.在原生数据空间里, 数据表现为标量(即scala基本类型,用橘 色小方块表示).集合类型(蓝色虚线 框) 和持久存储(红色圆柱).…