生成式对抗网络(GAN,generative adversarial network)由Goodfellow等人于2014年提出,它可以替代VAE来学习图像的潜在空间.它能够迫使生成图像与真实图像在统计上几乎无法区别,从而生成相当逼真的合成图像. 1.GAN是什么? 简单来说就是由两部分组成,生成器generator网络和判别器discriminator网络.一部分不断进化,使其对立部分也不断进化,实现共同进化的过程. 对GAN的一种直观理解是,想象我们想要试图生成一个二次元头像.一开始,我们并…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
DeepDream是一种艺术性的图像修改技术,它用到了卷积神经网络学到的表示,DeepDream由Google于2015年发布.这个算法与卷积神经网络过滤器可视化技术几乎相同,都是反向运行一个卷积神经网络:对卷积神经网络的输入做梯度上升,以便将卷积神经网络靠顶部的某一层的某个过滤器激活最大化.但有以下几个简单的区别: 使用DeepDream,我们尝试将所有层的激活最大化,而不是将某一层的激活最大化,因此需要同时将大量特征的可视化混合在一起 不是从空白的.略微带有噪声的输入开始,而是从现有的图像开…
本书的前四章旨在介绍开始构建生成式深度学习模型所需的核心技术.在第1章中,我们将首先对生成式建模领域进行广泛的研究,并从概率的角度考虑我们试图解决的问题类型.然后,我们将探讨我们的基本概率生成模型的第一个例子,并分析为什么随着生成式任务的复杂性增长,可能需要部署深度学习技术.第2章提供了开始构建更复杂的生成模型所需的深度学习工具和技术的指南.这旨在成为深度学习的实用指南,而不是对该领域的理论分析.特别是,我将介绍Keras,一个构建神经网络的框架,可用于构建和训练已在文献中发表的一些最先进的深度…
深度学习新星:GAN的基本原理.应用和走向 (本文转自雷锋网,转载已获取授权,未经允许禁止转载)原文链接:http://www.leiphone.com/news/201701/Kq6FvnjgbKK8Lh8N.html 作者:亚萌 相关参考: [OpenAI] Generative Models [搜狐科技]GAN之父NIPS 2016演讲现场直击:全方位解读生成对抗网络的原理及未来 [pdf]:http://www.iangoodfellow.com/slides/2016-12-04-NI…
深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding="utf-8") as f: data = f.read() return data text = load_data('./moes_tavern_lines.txt')[81:] train_count = int(len(text) * 0.6) val_count = int(l…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
原文地址:https://blog.csdn.net/Sakura55/article/details/81514828 1.GAN 先来看看公式:             GAN网络主要由两个网络构成,生成网络G和辨别网络D,生成模型G的思想是将一个噪声包装成一个逼真的样本,判别模型D则需要判断送入的样本是真实的还是假的样本,即共同进步的过程,辨别模型D对样本的判别能力不断上升,生成模型G的造假能力也不断上升!              需要注意的是,生成模型G的输入是服从-1~1均匀分布的随…
如何用前端页面原型生成对应的代码一直是我们关注的问题,本文作者根据 pix2code 等论文构建了一个强大的前端代码生成模型,并详细解释了如何利用 LSTM 与 CNN 将设计原型编写为 HTML 和 CSS 网站. 项目链接:https://github.com/emilwallner/Screenshot-to-code-in-Keras 在未来三年内,深度学习将改变前端开发.它将会加快原型设计速度,拉低开发软件的门槛. Tony Beltramelli 在去年发布了论文<pix2code:…
机器学习起源于神经网络,而深度学习是机器学习的一个快速发展的子领域.最近的一些算法的进步和GPU并行计算的使用,使得基于深度学习的算法可以在围棋和其他的一些实际应用里取得很好的成绩. 时尚产业是深度学习的目标领域之一.闪购网站Gilt就一直在使用深度学习来进行产品推荐和服装的属性分类.裙子样式是通过Facebook的Torch库来自动地识别其适用场合.裙子轮廓.领口和袖子类型的.Torch使用由ImageNet数据集训练得到的模型来利用每张图片已经具有的标签,并通过Gilt选定的具体特征来增强它…