博客已经迁移至Marcovaldo's blog (http://marcovaldong.github.io/) Andrew Ng的Machine Learning比較简单,已经看完.林田轩的机器学习基石很多其它的是从概率论的角度来介绍机器学习,之前的视频已经听了大半.但好多都是模棱两可. 如今从头開始,认真整理笔记.笔记的结构遵从课程视频的结构. 以下是机器学习基石的第一讲:the learning problem Course Introduction 机器学习是一门理论和实践相结合的课…
什么时候适合用机器学习算法? 1.存在某种规则/模式,能够使性能提升,比如准确率: 2.这种规则难以程序化定义,人难以给出准确定义: 3.存在能够反映这种规则的资料. 所以,机器学习就是设计算法A,从包含许多假设的假设集合H里,根据所给的数据集D,选出和实际规则f最为相似的假设g. 注:g和f相似度的衡量是基于所有数据,不仅仅是D. Learning Model = A + H, A确定后,H形式也给出, W的变化构成不同的属于H的h.…
机器学习分为四步: When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 一.What is Machine Learning Q:什么是“学习”? A:学习就是人类通过观察.积累经验,掌握某项技能或能力.就好像我们从小学习识别字母.认识汉字,就是学习的过程. 机器学习(Machine Learning),顾名思义,就是让机器(计算机)也能向人类一样,…
机器学习基石 4 Feasibility of Learning Learning is Impossible? 机器学习:通过现有的训练集 \(D\) 学习,得到预测函数 \(h(x)\) 使得它接近于目标函数 \(f(x)\). 问题:这种预测是可能的么?其泛化性的本质是什么?是什么保证了 \(h(x) \approx f(x)\) ? Probability to the Rescue 情景:有一个装有很多很多珠子的罐子,珠子的颜色是橙色和绿色,那么我们可以通过抽样的方法来估计橙色珠子的比…
机器学习基石 3 Types of Learning Learning with Different Output Space Learning with Different Data Label Learning with Different Protocol Learning with Different Input Space…
原文地址:https://www.jianshu.com/p/ed0aee74523f 一.Perceptron Learning Algorithm (一)算法原理 PLA本质是二元线性分类算法,即用一条线/一个面/一个超平面将1.2维/3维/4维及以上数据集根据标签的不同一分为二.算法确定后,根据\(W\)取值的不同形成不同的\(h\),构成假设集合\(H\).如2维感知器算法,根据\(w_0\),\(w_1\),\(w_2\)的不同取值,构成了不同的\(h\),这些\(h\)最终构成\(H…
三个理论上界: 三个线性模型: 三个关键工具: 三条学习规则: 1.奥卡姆剃刀定律 先从简单模型开始, 训练后出现欠拟合, 再尝试复杂点模型. 2.采样误差 训练.验证.测试数据尽量同分布. 3.数据偷看 找到折中方法.…
这门课的授课老师是个台湾人,师从Caltech的Yaser S. Abu-Mostafa,他们共同编撰了<Learning From Data>这本书.Yaser S. Abu-Mostafa在edx上也开设了机器学习的公开课,不过说实话,他的埃及口音英语实在很难听懂,而且讲的内容偏重理论,所以追了几节课就放弃了.这次他的学生带来了coursera的机器学习基石这门公开课,讲的内容和Yaser的公开课差不多,而且是中文授课(ppt是英文),这对于华语世界的学生来说是个福音.未来几周,我将把这门…
课程的讲授从logo出发,logo由四个图案拼接而成,两个大的和两个小的.比较小的两个下一次课程就可能会解释到它们的意思,两个大的可能到课程后期才会解释到它们的意思(提示:红色代表使用机器学习危险,蓝色代表使用机器学习不危险). 机器学习是理论与实践相结合的一门学问.要怎么学习机器学习课程?我们可以从很理论的角度出发:机器学习有什么推论什么结论,它可以设计出什么样的东西,我们可以非常深入的了解这些相关知识.然后,我们感叹,哇- 这些前辈好伟大,怎么可以设计出这么漂亮的数学,这么漂亮的东西.可是,…
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 每个部分由四节课组成,总共有16节课.那么,从这篇开始,我们将连续对这门课做课程笔记,共16篇,希望能对正在看这们课的童鞋有所帮助.下面开始第一节课的笔记:The Learning Problem. 一.What…