利用pca分析fmri的生理噪声】的更多相关文章

A kernel machine-based fMRI physiological noise removal method 关于,fmri研究中,生理噪声去除的价值:一.现在随着技术的提升,高场fmri越来越得到应用.高场能够提高图像的信噪比,但是生理噪声却也会提升.所以在高场成像分析中,生理噪声的去除会成为一个不可忽略的因素.二.在静息态fmri中,功能网络的检测依赖于低频的大脑自发信号.这些信号和生理噪声,在频率上,是有着类似的特征.为了提高静息态分析的准确性,去除生理噪声,是必须的操作.…
1.pca 抛开fmri研究这个范畴,我们有一个超长向量,这个超长向量在fmri研究中,就是体素数据.向量中的每个数值,都代表在相应坐标轴下的坐标值.这些坐标轴所组成的坐标系,其实是标准单位坐标系.向量如果乘以另外一个转换矩阵,我们可以得到这个向量在新坐标系下的坐标值.变换之后,新的向量维数就变了,一般是降低了,如果我们是以降维为考虑目标.如果把向量进行推广,成为矩阵,那么这个矩阵的每一列都代表一个向量,在具体的研究中,也就是一次采样数据.矩阵有多少列,就代表有多少次采样.在fmri研究中,如果…
一.利用ica进行fmri数据分解时,在得到相互独立的成分后,这些成分的后续处理,其实是有很多文章可以做的.比如,对这些成分进行排序和选择.如果能够提出某种方法,能够自动地制造特征,并将这些特征与分解后的独立成分的特征进行比对,确定相应的结果.比如,激活与否.这也可以算做是fmri信号的盲分离算法. 二.tca分析,就是进行成分的特征提取与判别的. 这种方法的假设是:一个被试在一次run中,大概会得到150多个timepoint的数据.将大脑在这150多个时间点的峰值信号值提取出来,然后得到一个…
在肖柯的硕士毕业论文中<基于CCA的fMRI时空模型数据处理方法的研究>,他的总体思路是利用cca提取出fmri图像在时间和空间上两个相关系数,也就是两个特征,然后利用pca,对这两个特征进行融合,得的一个综合的相关系数,然后利用这个综合的相关系数进行选取阈值,然后判别激活与否. 首先,他没有降噪. 其次,他有一个假设,就是信号发生体素具有空间局部性和时间局部性.所以,我们才有这样的假设,就是如果一个体素的时间cca系数较高,或者空间cca系数较高,那么,再或者空间-时间两者系数都较高,那么我…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 降维技术的用途 使得数据集更易使用: 降低很多算法的计算开销: 去除噪声: 使得结果易懂. 基本概念 降维(dimensionality reduction). 如果样本数据的特征维度很大,会使得难以分析和理解.我们可以通过降维技术减少维度. 降维技术并不是将影响少的特征去掉,而是将样本数据集转换成一个低维度…
首先,ica是一种探索性的方法,属于数据驱动的范畴. ica计算量很大,一般都是离线式计算. ica基于的猜想是,世界是加性的.在我们所研究的脑科学中,所采集到的BOLD信号,是由一些源信号所构成,更准确地说,是由这些源信号叠加而成的.也就是说,假设我们以每个体素为研究对象,那么每个体素的BOLD信号在每个时间点的数值,都是由很多个独立的源信号所组成.注意,在这里,我们对于ica的要求就是分离出的源信号是独立的. 那么,源信号来自于哪里呢? 来自于某个体素,来自于某个脑区,来自于分散在大脑皮层各…
第13章 利用 PCA 来简化数据 降维技术 场景 我们正通过电视观看体育比赛,在电视的显示器上有一个球. 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点. 人们实时的将显示器上的百万像素转换成为一个三维图像,该图像就给出运动场上球的位置. 在这个过程中,人们已经将百万像素点的数据,降至为三维.这个过程就称为降维(dimensionality reduction) 数据显示 并非大规模特征下的唯一难题,对数据进行简化还有如下一系列的原因: 使得数据集更容易使用…
  [导读] 心电图(ECG)学是一门将心脏离子去极(ionic depolarization) 后转换为分析用可测量电信号的科学.模拟电子接口到电极/患者设计中最为常见的难题之一便是优化右腿驱动 (RLD) ,其目的是实现较高的共模性能和稳定性. 心电图 (ECG) 学是一门将心脏离子去极(ionic depolarization) 后转换为分析用可测量电信号的科学.模拟电子接口到电极/患者设计中最为常见的难题之一便是优化右腿驱动 (RLD) ,其目的是实现较高的共模性能和稳定性.利用 SPI…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…
当我们进行群体遗传分析时,得到vcf后,可利用plink进行主成分(PCA)分析: 一.软件安装 1 conda install plink 二.使用流程 第一步:将vcf转换为plink格式 1 plink --vcf F_M_trans.recode.vcf.gz --recode --out testacc --const-fid --allow-extra-chr 2 3 4 # --vcf vcf 或者vcf.gz 5 # --recode 输出格式 6 # --out 输入前缀 7…