首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
dp优化-四边形不等式(模板题:合并石子)
】的更多相关文章
dp优化-四边形不等式(模板题:合并石子)
学习博客:https://blog.csdn.net/noiau/article/details/72514812 看了好久,这里整理一下证明 方程形式:dp(i,j)=min(dp(i,k)+dp(k+1,j))+cost(i,j) O(n^3) 四边形不等式:将其优化为O(n^2) 1.四边形不等式 a<b<=c<d f(a,c)+f(b,d)<=f(b,c)+f(a,d)交叉小于包含 则对于i<i+1<=j<j+1 f(i,j)+f(i+1,j+1)<…
省选算法学习-dp优化-四边形不等式
嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\right]$中的最小值/最大值/和值 然后有这样的转移: $dp\left[i\right]\left[j\right]=min\left(dp\left[i\right]\left[k-1\right]+dp\left[k\right]\left[j\right]+w\left(i,j\righ…
dp优化---四边形不等式与决策单调性
四边形不等式 定理1: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b,c,d(a<=b<=c<=d),并且w(a,d)+w(b,c)>=w(a,c)+w(b,d)都成立,则w(x,y)满足四边形不等式. 定理2: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b(a<b),并且w(a,b+1)+w(a+1,b)>=w(a,b)+w(a+1,b+1)都成立,则w(x,y)也满足四边形不等式. 用数学归纳法证明即可. 决策单调性 假设转移…
区间dp之四边形不等式优化详解及证明
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1][j]+cost[i][j]);(或者是max(........),本博客以min为例来证明) 熟悉一般区间dp的同学应该清楚我们如果想得到最终的答案,一般要用三层for循环来计算(第一层为长度,第二层枚举起始点,第三层在起始点i和终点j之间寻找最优的分割点).显而易见它的时间复杂度为o(n^3),…
【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等…
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的区间DP问题 d p[i][j]表示前i个节点,分为j个区间的最优策略值 cost[i][j]为从i到j节点的策略值 所以dp[i][j] = min(dp[k-1][j-1] + cost[k][i] 但是复杂度太高了 可以优化的地方有: cost数组值得求取: 考虑到cost(i,j)=ΣAxAy (i≤…
区间DP的四边形不等式优化
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:…
HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程很容易想出来,dp[i][j] 表示前 j 个数分成 i 组.但是复杂度是三次方的,肯定会超时,就要对其进行优化. 有两种方式,一种是斜率对其进行优化,是一个很简单的斜率优化 dp[i][j] = min{dp[i-1][k] - w[k] + sum[k]*sum[k] - sum[k]*sum[…
『一维线性dp的四边形不等式优化』
四边形不等式 定义:设\(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b,c,d\),在满足\(a\leq b\leq c \leq d\)时,都有\(w(a,d)+w(b,c)\geq w(a,c)+w(b,d)\)成立,则称函数\(w\)满足四边形不等式. 定理1:四边形不等式的等价表达 \(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b\),在满足\(a< b\)时,都有\(w(a,b+1)+w(a+1,b)\geq…
DP 优化方法大杂烩 & 做题记录 I.
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 \(f_{i,0/1}\) 分别表示不选(\(0\))/ 选(\(1\))点 \(i\) 的最大权值,那么有 \(f_{i,0}=\sum_{x\in S_i}\max(f_{x,0},f_{x,1}),f_{i,1}=v_i+\sum_{x\in S_i}f_{i,0}\). 如果加上修改操作,那…