Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that…
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5934 Accepted: 3461 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth…
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard output There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathematician Leonardo Fibonacci. Of c…
Sumdiv Time Limit:1000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1845 Appoint description: System Crawler (2015-05-27) Description Consider two natural numbers A and B. Let S be the sum of all natural…
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 39554 Accepted Submission(s): 14930 Problem Description Given a positive integer N, you should output the most right digit of N…
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci seque…
Assume that f(0) = 1 and 0^0=1. f(n) = (n%10)^f(n/10) for all n bigger than zero. Please calculate f(n)%m. (2 ≤ n , m ≤ 10^9, x^y means the y th power of x). InputThe first line contains a single positive integer T. which is the number of test cases.…
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 187893 Accepted Submission(s): 46820 Problem Description A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A…
Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a ps…
先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n -= 1 while(n > 0): if (n % 2 == 1): a = np.dot(b, a) b = np.dot(b, b) n >>= 1 return a[0][0] n = int(input()) print(factorial(n))…
#include<bits/stdc++.h> #define mod 1000000009 using namespace std; typedef long long ll; typedef long long LL; struct Mat { LL mat[3][3]; Mat() { memset(mat,0,sizeof(mat)); } LL* operator [](int x) //注意这种写法 { return mat[x]; } } A; Mat Mut(Mat a,Mat…
1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起 输入 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) 输出 输出计算结果 输入样例 3 5 8 输出样例 3 分治法,注意要用long long,防止数字溢出C++代码: #include<iostream> #include<cstdio> using namespace std; int pow…