最大匹配法:最大匹配是指以词典为依据,取词典中最长单词为第一个次取字数量的扫描串,在词典中进行扫描(为提升扫描效率,还可以跟据字数多少设计多个字典,然后根据字数分别从不同字典中进行扫描).例如:词典中最长词为“中华人民共和国”共7个汉字,则最大匹配起始字数为7个汉字.然后逐字递减,在对应的词典中进行查找. 下面以“我们在野生动物园玩”为例详细说明一下正向与逆向最大匹配方法: 1.正向最大匹配法: 正向即从前往后取词,从7->1,每次减一个字,直到词典命中或剩下1个单字. 第1次:“我们在野生动物…
最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直到找到或者成为单字. 实例: S1="计算语言学课程是三个课时" ,设定最大词长MaxLen = 5  ,S2= " " 字典中含有三个词:[计算语言学].[课程].[课时] (1)S2=…
分词算法设计中的几个基本原则: 1.颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安 局长”.“公安局 长”.“公安局长”都算对,但是要用于语义分析,则“公安局长”的分词结果最好(当然前提是所使用的词典中有这个词) 2.切分结果中非词典词越少越好,单字字典词数越少越好,这里的“非词典词”就是不包含在词典中的单字,而“单字字典词”指的是可以独立运用的单字,如“的”.“了”.“和”.“你”.“我”.“他”.例…
中文分词技术 中文自动分词可主要归纳为“规则分词”“统计分词”和“混合分词”,规则分词主要是通过人工设立词库,按照一定方式进行匹配切分,实现简单高效,但对新词很难进行处理,统计分词能够较好应对新词发现能特殊场景,但太过于依赖语料的质量,因此实践中多是采用两者的结合,即混合分词. 1.1 规则分词 基于规则的分词是一种机械分词方法,主要是通过维护词典,在切分语句时,将语句的每个字符串与词表中的词进行逐一匹配,找到则切分,否则不予切分. 按照匹配切分的方式,主要有正向最大匹配法.逆向最大匹配法以及双…
本次实验内容是基于词典的双向匹配算法的中文分词算法的实现.使用正向和反向最大匹配算法对给定句子进行分词,对得到的结果进行比较,从而决定正确的分词方法. 算法描述正向最大匹配算法先设定扫描的窗口大小maxLen(最好是字典最长的单词长度),从左向右取待切分汉语句的maxLen个字符作为匹配字段.查找词典并进行匹配.若匹配成功,则将这个匹配字段作为一个词切分出来,并将窗口向右移动这个单词的长度.若匹配不成功,则将这个匹配字段的最后一个字去掉,剩下的字符串作为新的匹配字段,进行再次匹配,重复以上过程,…
jieba“结巴”中文分词:做最好的 Python 中文分词组件 github:https://github.com/fxsjy/jieba 特点支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析:全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词.支持繁体分词 支持自定义词典MIT 授权协议安装说明代码对 Python 2/3 均兼容 全自动安装:easy_insta…
jieba "结巴"中文分词:做最好的 Python 中文分词组件 github:https://github.com/fxsjy/jieba 特点 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义: 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词. 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动…
目录 一.中文分词理论描述 二.算法描述 1.正向最大匹配算法 2.反向最大匹配算法 3.双剑合璧 三.案例描述 四.JAVA实现完整代码 五.组装UI 六.总结 前言 这篇将使用Java实现基于规则的中文分词算法,一个中文词典将实现准确率高达85%的分词结果.使用经典算法:正向最大匹配和反向最大匹配算法,然后双剑合璧,双向最大匹配. 一.中文分词理论描述 根据相关资料,中文分词概念的理论描述,我总结如下: 中文分词是将一个汉字序列切分成一个一个单独的词,将连续的字序列按照一定的规范重新组合成词…
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python setup.py install 模式 默认模式,试图将句子最精确地切开,适合文本分析 全模式,把句…
问题小结 1.安装 需要用到python,根据python2.7选择适当的安装包.先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install 若需要安装到myeclipse, 1.首先需要myeclipse能支持python,安装pydev.不同的pydev对于环境的要求不同,注意看jre的要求.   这一步的操作可以参考 http://blog.csdn.net/cssmhyl/article/details/2281…