Andrew Ng机器学习课程11之使用machine learning的建议 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 2015-9-28 艺少…
Andrew Ng机器学习课程11之贝叶斯统计和正则化 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 在统计学中有两个学派,一个是频率学派,另一个是贝叶斯学派.频率学派认为参数θ是一个固定的值,而不是随机变量,只不过是不知道它的值而已:而贝叶斯学派则认为任何参数θ都是一个随机变量,也有自己的概率分布.所以这两个学派分别形成了最大似然估计(maximum likelihood estimate,MLE)和最大后验估计(maximum a posterio…
神经网络的学习(Neural Networks: Learning) 9.1 代价函数 Cost Function 参考视频: 9 - 1 - Cost Function (7 min).mkv 假设神经网络的训练样本有…
Andrew Ng机器学习课程6 说明 在前面尾随者台大机器学习基石课程和机器学习技法课程的设置,对机器学习所涉及到的大部分的知识有了一个较为全面的了解,可是对于没有动手敲代码并加以使用的情况,基本上是不可能掌握好的.特别是我的学习进程是袭击式的,因此.会非常快忘掉.心中仅仅剩下一个主要的纲要,所以后面要通过解说更为具体的Andrew Ng教授的机器学习课程进行回想和总结,希望能够抓住它的来龙去脉. 所以总结的内容主要是推导的思路.仅仅要能够把握住思路,就能保持长久的记忆. 主要内容 朴素贝叶斯…
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述…
Andrew Ng机器学习课程9-补充 首先要说的还是这个bias-variance trade off,一个hypothesis的generalization error是指的它在样本上的期望误差,这个样本不一定是在training set中的.所以出现了两部分的误差,bias是指的是偏差,未能捕获由数据展示出的结构,underfit,large bias.variance指的是把碰巧出现在训练集数据的pattern给捕获了,但是有限的训练样本并不能反映wider pattern of the…
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮…
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模模糊糊的感觉,也刚入门,虽然现在也是入门,但是对于一些概念已经有了比较深的认识(相对于最开始学习机器学习的时候).所以为了打好基础,决定再次学习一下Andrew Ng的课程,并记录笔记以供以后复习参考. 1. 内容概要 Introduction 什么是机器学习 监督学习 非监督学习 Linear R…
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归&正规公式) Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数) Andrew Ng机器学习课程笔记--week4(神经网络) Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法) Andrew Ng机器学习课程笔记--week5(下)(…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…