考试T2,考试时打了个$O(n^3)$dp暴力,思路还是很好想的,但细节也不少,然后滚动数组没清空,而且题又看错了,只得了10pts,真是血的教训. 题解: 其实看数据范围,给出了模数是否为质数,其实应该能推测出这是道数学题(但是不会推式子啊) 我们仔细分析一下问题,我们设$ri,le,up ,down$分别为向右左上下走的步数,且总步数为T,然后我们只要知道,向一个方向走的步数就能得到其他的,但是我们发现光凭一个是求不出的,我们再转化一下思路,我们设在上下方向走的步数为$k$,则$up+dow…
4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T…
题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面这个公式进行转化 最后,化得的公式为 另外注意,上式右边是一个卷积的形式,但是,所得和的第一项是不需要加上的(不过图中公式没有体现).结合实际意义大概就是,i==0&&j==0时,gcd(i,j)不存在约数d,虽然0可以被任意正整数整除 & 第一项不为0 #include<bit…
链接:http://poj.org/problem?id=2154 题意:给出两个整数 N 和 P,表示 N 个珠子,N种颜色,要求不同的项链数, 结果 %p ~ 思路: 利用polya定理解~定理内容: 设是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为: 其中 , 为 的循环节数~     本题只有旋转一种置换方式,那么共有 N 个置换, 每个置换的循环节为 gcd(N,i)~ 那么结果为∑(N^(gcd(N, i))) %P.  N为 1e9, 不能枚举 i , 但…
嘻嘻, 从文化课中逃脱出来, 很痛苦啊, 英语已经近半年没学了,语文水平水的一批,在其他班里受虐待. 百废待兴. 因为曾经学了一段时间的省选,所以被老师拉回来送人头考试啦. 听说4.5 SDOI一轮哎, 什么都不会,最近就是推推莫比乌斯反演(我也就这玩意念念不忘了) 反正就上星期六,星期天和下一周四啦. 明天计划 https://ac.nowcoder.com/acm/contest/375/D?&headNav=acm BZOJ 2142 礼物 组合数学+数论 BZOJ 3884 上帝与集合的…
题目链接:传送门   A. Elections (思维+暴力) 思路: 从最小的k开始枚举就好了- -. #include <bits/stdc++.h> using namespace std; + ; int a[MAX_N]; int main() { int N; cin >> N; , sum = ; ; i <= N; i++) { scanf("%d", a+i); m = max(m, a[i]); sum += a[i]; } int a…
//写在前面 单就FFT算法来说的话,下面只给出个人认为比较重要的推导,详细的介绍可参考 FFT算法学习笔记 令v[n]是长度为2N的实序列,V[k]表示该实序列的2N点DFT.定义两个长度为N的实序列g[n]和h[n]为 g[n]=v[2n], h[n]=v[2n+1], 0<=n<N 则可进行如下推导 这里所用的FFT算法能够实现O(nlogn)复杂度的离散傅里叶变换和上面最后所得的关系密切相关. 下面进入正题——模意义下的FFT 还是需要先了解一下关于 复序列的DFT的对称性质及一些补充…
T2 visit [组合数学][中国剩余定理] 一场考试难得见两个数学题 本来想矩阵快速幂,显然空间复杂度不行,主要是没时间,就没打 正解: 首先推波式子 1.$C_{t}^{k}$    在t步中总共选出k步向上走,但最终只会走到m,到达m后,会又向下走k-m步,并会再向上走k-m步 2.$C_{t-k}^{k-m}$  在剩下的t-k步中选出向下走的k-m步 3. 先介绍一个小技巧:eg  10 分成两个数,使两数之和为10,之差为4,       则大数(10+4)/2=7,小数(10-4…
[51Nod1769]Clarke and math2(数论,组合数学) 题面 51Nod 题解 考虑枚举一个\(i_k\),枚举一个\(i\),怎么计算\(i_k\)对\(i\)的贡献. 把\(\frac{i}{i_k}\)拆掉,维护一个长度为\(k\)的数组,表示\(\frac{i_{k-1}}{i_{k}}\),对于每一个质因子,假设其出现次数为\(a\),那么就是把\(a\)个元素放进\(k\)个盒子里,盒子可以空,这个的方案数是\({a+k-1\choose k-1}={a+k-1\c…
Solve the puzzle, Save the world! Problem Description In the popular TV series Heroes, there is a tagline "Save the cheerleader, Save the world!". Here Heroes continues, "Solve the puzzle, Save the world!".Finally, alien invaders visit…