C 语言实例 - 斐波那契数列 斐波那契数列指的是这样一个数列 , , , , , , , , , , , , ,,,,,,,,,,,........ 这个数列从第3项开始,每一项都等于前两项之和. 实例 - 输出指定数量的斐波那契数列 #include <stdio.h> int main() { , t2 = , nextTerm; printf("输出几项: "); scanf("%d", &n); printf("斐波那契数列:…
输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列(Fibonacci sequence)----- def check_num(number:str): ''' 对输入的字符串检查,正整数,返回Ture,否则返回False :param number: 输入的字符串 :return: 符合要求,返回Ture,不符合返回False ''' # 输入不…
刚开始学Python的时候,记得经常遇到打印斐波那契数列了,今天玩玩使用四种办法打印出斐波那契数列 方法一:使用普通函数 def feibo(n): """ 打印斐波那契数列 :param n: 输入要打出多少项 """ count = 0 # 定义一个计数器 num1, num2 = 0, 1 # 定义前2项 0,1 while count < n: print(num1, end=" ") num1, num2 =…
/* * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:Feibo.cpp * 作者:常轩 * 微信公众号:Worldhello * 完成日期:2016年3月6日 * 版本号:V1.0 * 问题描述:输出斐波那契数列中小于10000的每一项 * 程序输入:无 * 程序输出:见运行结果 */ #include<iostream> using namespace std; int main() { int fei(in…
斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.--在数学上,斐波那契数列以如下被以递推的方法定义:F(1)=0,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N* 本文章要解决的问题是: 1.生成前n项斐波那契数列 2.求第n项斐波那契数列的值是…
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 斐波那契数列求和 { class Program { static void Main(string[] args) { Console.WriteLine()); Console.WriteLine()); Console.WriteLine()…
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n).第一个斐波拉契数为F() = . 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod . 斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用…
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var reg = n1 + n2; console.log('第'+i+'个为:'+reg); n1 = n2;n2 = reg; } //解法2:开枝散叶,递推到一开始的1或2 // //以n=8 举例 // // 8 // / \ // / \ // / \ // 7 6 // / \ /\ // / \…
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时候,大多都会用Fibonacci作为例子,因此我们会对这种解法烂熟于心: public static long FibonacciRecursively(uint n) { ) { ; } ) { ; } ) + FibonacciRecursively(n - ); } 上述递归的解法有很严重的效…
斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归深度过深,速度降低 int fib1(int n){ if (n == 1 || n == 2) return 1; return fib1(n - 1) + fib1(n - 2); } //2.非递归: 时间复杂度O(n) int fib2(int n){ if (n == 1 || n ==…