转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前的文章也提到过了,卷积网络中主要有两个操作,一个是卷积(Convolution),一个是池化(Pooling). 其中池化层并不会对通道之间的交互有影响,只是在各个通道中进行操作. 而卷积层则可以在通道与通道之间进行交互,之后在下一层生成新的通道,其中最显著的就是Incept-Net里大量用到的1x…
卷积神经网络中 channels 分为三种:    (1):最初输入的图片样本的 channels ,取决于图片类型,比如RGB, channels=3    (2):卷积操作完成后输出的 out_channels ,取决于卷积核的数量.此时的 out_channels 也会作为下一次卷积时的卷积核的 in_channels    (3):卷积核中的 in_channels ,就是上一次卷积的 out_channels ,如果是第一次做卷积,就是1中样本图片的 channels 注意: 卷积核数…
在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet ,channels 都是必填的一个参数. channels 该如何理解?先看一看不同框架中的解释文档. 首先,是tensorflow中给出的,对于输入样本中 channels 的含义.一般的RGB图片,channels 数量是 3 (红.绿.蓝):而monochrome图片,channels 数量是 1 . channels :——tensorflow…
CVPR2020:点云分析中三维图形卷积网络中可变形核的学习 Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_Convolution_in_the_Cloud_Learning_Deformab…
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核形状都为正方形,x和y轴方向的padding相同,stride也相同. 记号:  i,o,k,p,s i,o,k,p,s 分别表示:卷积/反卷积的输入大小 input size input size,卷积/反卷积输出大小 output size output size,卷积/反卷积核大小 kerne…
什么是通道Channel 这个说实话挺难定义的,有点抽象,不过我们可以根据它的用途来理解: 通道主要用于传输数据,从缓冲区的一侧传到另一侧的实体(如文件.套接字...),反之亦然: 通道是访问IO服务的导管,通过通道,我们可以以最小的开销来访问操作系统的I/O服务: 顺便说下,缓冲区是通道内部发送数据和接收数据的端点,如下图所示: 另外,关于通道Channel接口的定义,很简单,只有两个方法,判断通道是否打开和关闭通道: public interface Channel extends Clos…
什么是Scatter/Gather scatter/gather指的在多个缓冲区上实现一个简单的I/O操作,比如从通道中读取数据到多个缓冲区,或从多个缓冲区中写入数据到通道: scatter(分散):指的是从通道中读取数据分散到多个缓冲区Buffer的过程,该过程会将每个缓存区填满,直至通道中无数据或缓冲区没有空间: gather(聚集):指的是将多个缓冲区Buffer聚集起来写入到通道的过程,该过程类似于将多个缓冲区的内容连接起来写入通道: scatter/gather接口 如下是Scatte…
目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视化的重要性: 深度学习很多方向所谓改进模型.改进网络都是在按照人的主观思想在改进,常常在说模型的本质是提取特征,但并不知道它提取了什么特征.哪些区域对于识别真正起作用.也不知道网络是根据什么得出了分类结果.为了增强结果的可解释性,需要给出模型的一些可视化图来证明模型或新methods对于任务的作用,…
TCN是指时间卷积网络,一种新型的可以用来解决时间序列预测的算法.在这一两年中已有多篇论文提出,但是普遍认为下篇论文是TCN的开端. 论文名称: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling 作者:Shaojie Bai 1 J. Zico Kolter 2 Vladlen Koltun 3 自从TCN提出后引起了巨大反响,有人认为 时间卷积网络(TCN)…
全卷积网络Fully Convolutional Networks (FCN)实战 使用图像中的每个像素进行类别预测的语义分割.全卷积网络(FCN)使用卷积神经网络将图像像素转换为像素类别.与之前介绍的卷积神经网络不同,FCN通过转置卷积层将中间层特征映射的高度和宽度转换回输入图像的大小,使得预测结果在空间维度(高度和宽度)与输入图像一一对应.给定空间维度上的位置,信道维度的输出将是对应于该位置的像素的类别预测. 将首先导入实验所需的包或模块,然后解释转置卷积层. %matplotlib inl…