[UOJ#278][UTR #2]题目排列顺序 试题描述 “又要出题了.” 宇宙出题中心主任 —— 吉米多出题斯基,坐在办公桌前策划即将到来的 UOI. 这场比赛有 n 道题,吉米多出题斯基需要决定这些题目的难度,然后再在汪洋大海中寻找符合该难度的题目. 题目的难度可以用一个 1 到 n 的排列 a1,…,an 表示,其中 ai 表示第 i 道题目在这 n 道题目中是第 ai 简单的题目,即恰有 ai−1 道题目比第 i 道题目简单. 经验丰富的吉米多出题斯基早就悟出了一种科学地决定难度顺序的方…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000  作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权!  题目链接:http://uoj.ac/problem/279  算法一: $n<=4$时直接上暴力就可以了,爆搜30分: 算法二: 对于没有$d(i,j)(i!=j)=0$的情况,考虑如果不存在$d(i,k)+d(k,j)=d(i,j)$的情况,则只能…
题目描述 定好了难度,雄心勃勃的吉米多出题斯基开始寻找智慧的神犇星球的居民出题. 然而吉米多出题斯基没有料到,神犇星球的居民告诉吉米多出题斯基:"今年神犇星球经济不景气,大家都想宅在家里,哪有心思出来出题呢?" 为了挽救这一局面,吉米多出题斯基决定为神犇星球建一些高速传送通道促进该星球各地区之间交流题目. 神犇星球有 $n$ 座小城.对于任意两座小城 $v, u$($v \neq u$),吉米多出题斯基想在 $v, u$ 之间建立一个传送时间为 $w(v, u)$ 的无向传送通道,其中…
题目:告诉你每两个点之间的最短路距离.构造每条边边权<=m的无向完全图.求有多少种不同边权的图满足最短路限制?n<=400. 标程: #include<cstdio> #include<algorithm> #include<cstring> using namespace std; typedef long long ll; ; ; int n,a[N][N],c[N][N],g[N],f[N],sz[N],h[N],ans,m; bool ok() {…
传送门 先考虑无解的情况,为以下几种:\(dis_{i,j}+dis_{j,k}<dis_{i,k}\),\(dis_{i,i}\neq 0\),\(dis_{i,j}\neq dis_{j,i}\),\(dis_{i,j}>K\).先大力特判掉 然后来考虑没有边权为\(0\)的时候,把原图中所有的边分类,对于\((i,j)\),如果存在\(k\)使得\(dis_{i,k}+dis_{k,j}=dis_{i,j}\),那么称其为\(B\)类边,否则为\(A\)类边.显然\(A\)类边的权值就是…
http://uoj.ac/problem/279 先判断答案为0的情况,\(d(i,i)\neq 0\),\(d(i,j)\neq d(j,i)\),\(d(i,j)>d(i,k)+d(k,j)\),\(d(i,j)>k\). 对于\(d(i,j)>0\)的情况,如果存在\(k\neq i,j\)且满足\(d(i,j)=d(i,k)+d(k,j)\),那么i和j的边就可以取d(i,j)-k的所有权值,答案乘上\(k-d(i,j)+1\)即可. 如果存在\(d(i,j)=0\)的情况,用…
题目大意: 神犇星球有 \(n\) 座小城.对于任意两座小城 \(v,u\)\((v≠u)\),吉米多出题斯基想在 \(v,u\) 之间建立一个传送时间为 \(w(v,u)\)的无向传送通道,其中 \(w(v,u)\) 为不超过 \(k\) 的非负整数.建成后,神犇星球的居民可从一座小城出发经过一个或若干个传送通道到达另一座小城交流题目,花费的时间为所有经过的传送通道的传送时间之和. 吉米多出题斯基还没有决定每一个传送通道的传送时间取值,只是对于任意两座小城 \(v,u\),决定了从 \(v\)…
9个月的心头大恨终于切掉了!!!! 非常好的一道题,不知为何uoj上被点了70个差评. 题目链接: http://uoj.ac/problem/214 题目大意: 请自行阅读. 题解: 官方题解讲得相当清楚,这里补充一下自己的一些理解. 首先来看\(O(2^{n-m}\times poly(n,m))\)的做法. 一种理解方式是官方题解. 设\(s\)为总共的课程个数(\(n\)个字符串的总长度),\(p(S)\)表示结尾位置为集合\(S\)的串全部匹配一共需要完成多少个不同的课程.设\(f(t…
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
[UOJ#390][UNR#3]百鸽笼(动态规划,容斥) 题面 UOJ 题解 发现这就是题解里说的:"火山喷发概率问题"(大雾 考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼数量,因为概率会随着你空的鸽笼的数量而变化. 我们可以把这个问题转变为给一个长度为\(N\)的序列填数的问题. 直接算似乎不是很好算(因为直接算是要钦定在最后,那么其他的东西放满之后每个位置被选择的概率会被改变),我们把最后一个被填满的恰好是\(i\),变成至少有一个集合\(S\)在\(i\)后面被填满. 因…