10 Exploring Temporal Information for Dynamic Network Embedding 5 link:https://scholar.google.com.sg/scholar_url?url=https://ieeexplore.ieee.org/abstract/document/9242309/&hl=zh-TW&sa=X&ei=ZiiOYp6gEpT0yASct56wBQ&scisig=AAGBfm3bQgwV0icZGtwl…
[论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 0x02 解读思路 2.1 Memorization 和 Generalization 2.1.1 Memorization 2.1.2 Generalization 2.2 发展脉络 0x03 DNN 3.1 深度模型思路 3.2 DNN模型 3.3 工作机制 3.4 模型特点 0x04 DIN…
[论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的问题 1.2.2 DIEN创新 1.3 名词解释 0x02 总体概要 2.1 模型架构 0x03 兴趣抽取层 3.1 之前工作 3.2 GRU 3.3 辅助损失 3.3.1 辅助损失 3.3.2 全局损失 3.3.3 辅助损失作用 3.4 总结 0x04 兴趣进化层 4.1 演化规律 4.2 AUG…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 为了提高资源的利用率以及满足不同应用的需求,在同一集群内会部署各种不同的分布式运算框架(cluster computing framework),他们有着各自的调度逻辑. Mesos…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读笔记 Word Embeddings A Survey 收获 Word Embedding 的定义 dense, distributed, fixed-length word vectors, built using word co-occurrence statistics as per the distributional hypothesis. 分布式假说(distributional hypothesis) word with similar contexts have the…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…