机器学习-评价指标-AUCROC】的更多相关文章

有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-custom-transformers 幼儿级模型 一.模型训练 简单的preprocessing后,仅使用一个“属性”做预测,看看结果如何? #%% import pandas as pd import numpy as np import os from sklearn.model_selection…
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项.使用技巧): 没有固定标准,一般会3-10分群.或者用一些指标评价,然后交叉验证不同群的分群指标. 一般的指标:轮廓系数silhouette(-1,1之间,值越大,聚类效果越好)(fpc包),兰德指数rand:R语言中有一个包用30种方法来评价不同类的方法(NbClust),但是速…
第一阶段 关注公众号"轻松学编程"了解更多. 详细学习资料 需要时间一个月. 1.python概念 ​ python是一种解释型.面向对象.动态数据类型的高级程序语言. ​ 理解:程序运行时才翻译成机器码:一切皆对象的编程思维:变量不需要指定类型. ​ 优点:容易学习.容易阅读.有一个广泛的标准库.可移植性.可扩展性. ​ 缺点:因为是解释型的语言,在运行时才编译,每运行一次就编译一次,这会大大降低运行的效率:发布程序时要把源代码发布出去,代码的保密不够好. ​ python运用场景:…
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1.混淆矩阵 True Positive(真正,TP):将正类预测为正类的数目 True Negative(真负, TN):将负类预测为负类的数目 False Positive(假正,FP):将负类预测为正类的数目(Type I error) False Negative(…
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好. 准确率确实是一个很好很直观的评价指标,但是有时候准确率高并不能代表一个算法就好.比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:…
前文回顾: 机器学习模型评价指标之混淆矩阵 机器学习模型评价指标之Accuracy.Precision.Recall.F-Score.P-R Curve.AUC.AP 和 mAP 1. 基本指标 1.1 True Positive Rate(TPR) \(TPR = \frac{TP}{TP+FN}\) 中文:真正率.灵敏度.召回率.查全率.显然这个就是查准率. TPR 表示 "实际为正的样本"中,有多少预测是正确的. TPR 越高越好,越高意味着模型对"正样本"的…
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型…
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率:召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率. 一般来说,Precision就是检索出来的条目(比如:文档.网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了. 正确率.召回…
原文地址 ?传送门 对于回归预测结果,通常会有平均绝对误差.平均绝对百分比误差.均方误差等多个指标进行评价.这里,我们先介绍最常用的3个: 平均绝对误差(MAE) 就是绝对误差的平均值,它的计算公式如下: M A E ( y , y ^ ) = 1 n ( ∑ i = 1 n ∣ y − y ^ ∣ ) MAE(y,\hat{y}) = \frac{1}{n}(\sum_{i = 1}^{n}\left | y - \hat{y} \right |) MAE(y,y^​)=n1​(i=1∑n​∣…
分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些指标来评价. 本文对分类问题的常见评价指标进行介绍,并附上利用sklearn库的python实现. 将从以下三个方面分别介绍: 常用评价指标 混淆矩阵绘制及评价指标计算 ROC曲线绘制及AUC计算 1. 常用评价指标 混淆矩阵(confusion matrix) 一般用来描述一个分类器分类的准确程度…