NVIDIA安培架构】的更多相关文章

NVIDIA安培架构 NVIDIA Ampere Architecture In-Depth 在2020年英伟达GTC主题演讲中,英伟达创始人兼首席执行官黄仁勋介绍了基于新英伟达安培GPU架构的新英伟达A100 GPU.本文将介绍新的A100 GPU,并描述NVIDIA安培体系结构GPU的重要新功能. 在现代云数据中心运行的计算密集型应用程序的多样性推动了NVIDIA GPU加速云计算的爆炸式增长.这些密集型应用包括人工智能深度学习(AI deep learning,DL)培训和推理.数据分析.…
NVIDIA深度架构 本文介绍A100 GPU,NVIDIA Ampere架构GPU的重要新功能. 现代云数据中心中运行的计算密集型应用程序的多样性推动了NVIDIA GPU加速的云计算的爆炸式增长.此类密集型应用程序包括AI深度学习(DL)训练和推理,数据分析,科学计算,基因组学,边缘视频分析和5G服务,图形渲染,云游戏等.从扩展的AI训练和科学计算,到扩展的推理应用程序,再到支持实时对话式AI,NVIDIA GPU提供了必要的功能,加速当今云数据中心中运行的众多复杂且不可预测的工作负载. N…
1 GPU简介 图形处理单元GPU英文全称Graphic Processing Unit,GPU是相对于CPU的一个概念,NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念.GPU使显卡减少了对CPU的依赖,并进行部分原本CPU的工作(主要是并行计算部分).GPU具有强大的浮点数编程和计算能力,在计算吞吐量和内存带宽上,现代的GPU远远超过CPU. 目前NVIDIA最新的CUDA图形计算架构主要是Fermi架构和Kepler架构. 2  Fermi架构概述 上…
NVIDIA安倍架构 NVIDIA Ampere ArchitectureNVIDIA The Heart of the World's Highest-Performing, Elastic Data Centers 一.现代数据中心中AI和HPC的核心 科学家.研究人员和工程师我们这个时代的达芬奇和爱因斯坦正致力于用人工智能和高性能计算(HPC)解决世界上最重要的科学.工业和大数据挑战.与此同时,企业甚至整个行业都在寻求利用人工智能的力量,从海量数据集中(包括内部和云中)获取新的见解.NVI…
多实例gpu_MIG技术快速提高AI生产率 Ride the Fast Lane to AI Productivity with Multi-Instance GPUs 一.平台介绍 NVIDIA安培架构中的MIG模式可以在A100 GPU上并行运行七个作业. 二.技术原理 还记得夏天休息后,在饮水机前排着长队等你吗?现在想象一下一个多头的喷泉,流动着所有人的清凉善良. 这就是NVIDIA安培体系结构中启用的多实例GPU(MIG)的本质. MIG将一个NVIDIA A100 GPU划分为多达七个…
稀疏性如何为AI推理增加难度 NVIDIA Ampere架构使数学运算加倍,以加速对各种神经网络的处理. 如果曾经玩过游戏Jenga,那么将有一些AI稀疏感. 玩家将木制积木交叉成一列.然后,每个玩家轮流小心地移开一个障碍物,而不会倾倒立柱. 它从一开始就很容易,但是变得越来越毛茸茸,直到失败的玩家拔出一个障碍物,导致塔楼坠毁. 多年来,研究人员一直在努力地利用数字打积木,以利用稀疏性来加速AI.他们尝试从神经网络中提取尽可能多的不需要的参数-而不破坏AI的超高精度. 目标是减少深度学习所需的矩…
用NVIDIA A100 GPUs提高计算机视觉 Improving Computer Vision with NVIDIA A100 GPUs 在2020年英伟达GPU技术会议的主题演讲中,英伟达创始人兼首席执行官黄延森介绍了基于英伟达安培GPU架构的新英伟达A100 GPU. 在这篇文章中,我们详细介绍了A100的令人兴奋的新特性,这些特性使NVIDIA GPU成为计算机视觉工作负载的一个更好的动力.我们还展示了NVIDIA最近的两个CV研究项目:语义分割的层次多尺度注意和Bi3D:通过二元…
结合CUDA范例精解以及CUDA并行编程.由于正在学习CUDA,CUDA用的比较多,因此翻译一些个人认为重点的章节和句子,作为学习,程序将通过NVIDIA K40服务器得出结果.如果想通过本书进行CUDA编程,又不太懂CUDA和GPU的架构,可以将这个博客作为入门博客(但是希望你能有些基础,因为我介绍的并不是特别全面,只是捡了一些我困惑很久后来明白的知识点,如果完全不懂GPU的话,建议通读本书和介绍GPU的架构的书),我尽量在一个月更新完这本书的中文内容(部分)并补充一些自己的认识.欢迎大家评论…
目录 一.导言 1.1 为何要了解GPU? 1.2 内容要点 1.3 带着问题阅读 二.GPU概述 2.1 GPU是什么? 2.2 GPU历史 2.2.1 NV GPU发展史 2.2.2 NV GPU架构发展史 2.3 GPU的功能 三.GPU物理架构 3.1 GPU宏观物理结构 3.2 GPU微观物理结构 3.2.1 NVidia Tesla架构 3.2.2 NVidia Fermi架构 3.2.3 NVidia Maxwell架构 3.2.4 NVidia Kepler架构 3.2.5 NV…
NVIDIA CUDA C++ 编译器 nvcc 基于每个内核,既可以用来产生特定于体系结构的 cubin 文件,又能产生前向兼容的 PTX 版本. 每个 cubin 文件针对特定的计算能力版本,并且仅与相同主要版本号的 GPU 架构向前兼容. 例如,针对计算能力 3.0 的 cubin 文件支持所有计算能力 3.x 设备,但不支持计算能力 5.x 或 6.x 设备. 基于这个原因,为了确保与应用程序发布后引入的 GPU 架构的向前兼容性,建议所有应用程序都包含其内核的 PTX 版本. 注意:C…