上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutMix数据增强方式, 是CutMix数据增强方法的改进版.不同于一般的数据增强的方式是对一张图片进行扭曲.翻转.色域变化,CutMix数据增强方式是对两张图片进行拼接变为一张新的图片,然后将拼接好了的图片传入到神经网络中去学习,如下图. CutMix的处理方式比较简单,对一对图片做操作,简单讲就是随机…
Promise入门到精通(初级篇)-附代码详细讲解 ​     Promise,中文翻译为承诺,约定,契约,从字面意思来看,这应该是类似某种协议,规定了什么事件发生的条件和触发方法. ​     Promise的诞生和一个词有关,就是异步 ​     什么是异步??? ​     首先javascript是运行在浏览器端的语言,必须依赖javascript引擎来解析并执行代码,js引擎是单线程,也就是一个任务接着一个任务来执行程序,这种单线程很容易因为一个任务发生延迟,造成整体的耗时变长,为了解…
GridMask Data Augmentation, ARXIV 2020 代码地址:https://github.com/akuxcw/GridMask 这篇论文提出了一种简单的数据增强方法,在图像分类.检测.分割三个任务进行实验,效果提升明显. 1. Introduction 作者首先回顾了数据增强(Data augmentation)方法,指出当前方法有三类:spatial transformation, color distortion, 以及 information dropping…
在Activity之间如何传递数据,请尽可能说出你所知道的传递数据的方法,并详细描述其实现过程. 答案:可以通过Intent对象.静态变量.剪切板和全局对象进行数据传递,具体的数据传递方法如下. 1. Intent对象 Intent对象时在Activity之间传递数据的传统方式(同样适合于Service和BroadcastReceiver).可以通过Intent.putExtra方法设置要传递的数据,通过Intent.getXxxExtra方法获取传递的数据.其中的Xxx表示Int.String…
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled or Unlabeled Data Set 03 Transforming Samples from Similar Data Sets Discussion and Summary 原文链接:小样本学习与智能前沿 上一篇:A Survey on Few-Shot Learning | Intro…
前三章我们陆续介绍了半监督和对抗训练的方案来提高模型在样本外的泛化能力,这一章我们介绍一种嵌入模型的数据增强方案.之前没太重视这种方案,实在是方法过于朴实...不过在最近用的几个数据集上mixup的表现都比较哇塞,所以我们再来聊聊~ Mixup paper: mixup: Beyond Empirical Risk Minimization TF源码:https://github.com/facebookresearch/mixup-cifar10 torch复现:ClassicSolution…
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了. 方法定义tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None) 参数:**input : ** 输入的要做卷积的图片,要…
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟合问题,一般有两种思路,一种是用正则化方法,也就是限制模型的复杂度,比如Dropout.L1和L2正则化.早停和权重衰减(Weight Decay),一种是增大训练样本量,比如数据增强(Data Augmentation).这些方法的原理阐述可以看我之前整理的文章<深度学习之正则化方法>. 下面用…
数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只有一小部分区域保留在原图中,这需要额外的机制来判断是否需要去掉该目标来训练模型.为此TensorLayer 1.7.0(tf>=1.4 && tl>=1.7)发布中,提供了大量关于目标检测任务的数据集下载.目标坐标处理.数据增强的API.最近的几次发布主要面向新的卷积方式(Defo…
前言 在深度学习的应用过程中,数据的重要性不言而喻.继上篇介绍了数据合成(个人认为其在某种程度上可被看成一种数据增强方法)这个主题后,本篇聚焦于数据增强来介绍几篇杰作! (1)NanoNets : How to use Deep Learning when you have Limited Data (2)Data Augmentation | How to use Deep Learning when you have Limited Data—Part 2 网上也已经有了上述文章的翻译,推荐…