[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 模型的构建 2 结构参数的存储与载入 3 参数的存储与载入 4 结构的存储与载入 本文主要讲述TF2.0的模型文件的存储和载入的多种方法.主要分成两类型:模型结构和参数一起载入,模型的结构载入. 1 模型的构建 import tensorflow.keras as ker…
文章转载自微信公众号:机器学习炼丹术.欢迎大家关注,这是我的学习分享公众号,100+原创干货. 文章目录: 目录 1 模型构建函数 1.1 add_module 1.2 ModuleList 1.3 Sequential 1.4 小总结 2 遍历模型结构 2.1 modules() 2.2 named_modules() 2.3 parameters() 3 保存与载入 本文是对一些函数的学习.函数主要包括下面四个方便: 模型构建的函数:add_module,add_module,add_mod…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 什么是eager模式 2 TF1.0 vs TF2.0 3 获取导数/梯度 4 获取高阶导数 之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型.这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度. 1 什么是…
模型读取和存储 总结下来,就是几个函数 torch.load()/torch.save() 通过python的pickle完成序列化与反序列化.完成内存<-->磁盘转换. Module.state_dict()/Module.load_state_dict() state_dict()获取模型参数.load_state_dict()加载模型参数 读写Tensor 我们可以直接使用save函数和load函数分别存储和读取Tensor.save使用Python的pickle实用程序将对象进行序列化…
[机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs keras.layers.Layer 之前讲过了如何用tensorflow构建数据集,然后这一节课讲解如何用Tensorflow2.0来创建模型. TF2.0中创建模型的API基本上都放到了它的Keras中了,Keras可以理解为TF的高级API,里面封装了很多的常见网络层.常见损失函数等. 后续会详细…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 0 为什么学TF 1 Tensorflow的安装 2 数据集构建 2 预处理 3 构建模型 4 优化器 5 训练与预测 0 为什么学TF 之前的15节课的pytorch的学习,应该是让不少朋友对PyTorch有了一个全面而深刻的认识了吧 (如果你认真跑代码了并且认真看文章了的…
文章目录: 目录 1 模型三要素 2 参数初始化 3 完整运行代码 4 尺寸计算与参数计算 1 模型三要素 三要素其实很简单 必须要继承nn.Module这个类,要让PyTorch知道这个类是一个Module 在__init__(self)中设置好需要的组件,比如conv,pooling,Linear,BatchNorm等等 最后在forward(self,x)中用定义好的组件进行组装,就像搭积木,把网络结构搭建出来,这样一个模型就定义好了 我们来看一个例子: 先看__init__(self)函…
文章来自微信公众号[机器学习炼丹术]. 上一节课,讲解了MNIST图像分类的一个小实战,现在我们继续深入学习一下pytorch的一些有的没的的小知识来作为只是储备. 参考目录: @ 目录 1 pytorch数据结构 1.1 默认整数与浮点数 1.2 dtype修改变量类型 1.3 变量类型有哪些 1.4 数据类型转换 2 torch vs numpy 2.1 两者转换 2.2 两者区别 3 张量 3.1 张量修改尺寸 3.2 张量内存存储结构 3.3 存储区 3.4 头信息区 1 pytorch…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.NLP等多个学术交流分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 PIL读取图片 2 TF读取图片 3 TF构建数据集 本文的代码已经上传公众号后台,回复[PyTorch]获取. 1 PIL读取图片 想要把一个图片,转换成RGB3通道的一个张量,我们怎么做呢?大家第一反应应该是PIL这个库吧 from PIL import Image impor…
文章来自公众号[机器学习炼丹术],回复"炼丹"即可获得海量学习资料哦! 目录 1 动态图的初步推导 2 动态图的叶子节点 3. grad_fn 4 静态图 本章节缕一缕PyTorch的动态图机制与Tensorflow的静态图机制(最新版的TF也支持动态图了似乎). 1 动态图的初步推导 计算图是用来描述运算的有向无环图 计算图有两个主要元素:结点(Node)和边(Edge): 结点表示数据 ,如向量.矩阵.张量; 边表示运算 ,如加减乘除卷积等: 上图是用计算图表示: \(y=(x+w…