Spark Shuffle(ExternalSorter)】的更多相关文章

1.Shuffle流程 spark的shuffle过程如下图所示,和mapreduce中的类似,但在spark2.0及之后的版本中只存在SortShuffleManager而将原来的HashShuffleManager废弃掉(但是shuffleWriter的子类BypassMergeSortShuffleWriter和已经被废弃掉的HashShuffleWriter类似).这样,每个mapTask在shuffle的sort阶段只会生成一个结果文件,单个文件按照partitionId分成多个reg…
转载自:https://blog.csdn.net/raintungli/article/details/70807376 当Executor进行reduce运算的时候,生成运算结果的临时Shuffle数据,并保存在磁盘中,被最后的Action算子调用,而这个阶段就是在ShuffleMapTask里执行的. 前面博客中也提到了,用什么ShuffleWrite是由ShuffleHandler来决定的,在这篇博客里主要介绍最常见的SortShuffleWrite的核心算法ExternalSorter…
1. 前言 在前面的博客中讨论了Executor, Driver之间如何汇报Executor生成的Shuffle的数据文件,以及Executor获取到Shuffle的数据文件的分布,那么Executor是如何获取到Shuffle的数据文件进行Action的算子的计算呢? 在ResultTask中,Executor通过MapOutPutTracker向Driver获取了ShuffID的Shuffle数据块的结构,整理成以BlockManangerId为Key的结构,这样可以更容易区分究竟是本地的S…
1. 前言 在博客里介绍了ShuffleWrite关于shuffleMapTask如何运行,输出Shuffle结果到Shuffle_shuffleId_mapId_0.data数据文件中,每个executor需要向Driver汇报当前节点的Shuffle结果状态,Driver保存结果信息进行下个Task的调度. 2. StatusUpdate消息 当Executor运行完Task的时候需要向Driver汇报StatusUpdate的消息 override def statusUpdate(tas…
Spark 定制版:003~Spark Streaming(三) 本讲内容: a. Spark Streaming Job 架构和运行机制 b. Spark Streaming Job 容错架构和运行机制 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾: 上节课谈到Spark Streaming是基于DStream编程.DStream是逻辑级别的,而RDD是物理级别的.DStream是随着时间的流动内部将集合封装RDD.对DStream的操…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
本地执行Spark SQL程序: package com.fc //import common.util.{phoenixConnectMode, timeUtil} import org.apache.spark.sql.SQLContext import org.apache.spark.sql.functions.col import org.apache.spark.{SparkConf, SparkContext} /* 每天执行 */ object costDay { def mai…
继上次的Spark-shell脚本源码分析,还剩下后面半段.由于上次涉及了不少shell的基本内容,因此就把trap和stty放在这篇来讲述. 上篇回顾:Spark源码分析之Spark Shell(上) function main() { if $cygwin; then # Workaround for issue involving JLine and Cygwin # (see http://sourceforge.net/p/jline/bugs/40/). # If you're us…
Spark学习之Spark Streaming(9) 1. Spark Streaming允许用户使用一套和批处理非常接近的API来编写流式计算应用,这就可以大量重用批处理应用的技术甚至代码. 2. Spark Streaming使用离散化(discretized steam)作为抽象表示,叫做DStream.DStream是随时间推移而收到的数据的序列. 3. DSteam支持两种操作:转换操作(transformation),会生成一个新的DStream:另一种是输出操作(output op…
Spark学习之Spark SQL(8) 1. Spark用来操作结构化和半结构化数据的接口--Spark SQL. 2. Spark SQL的三大功能 2.1 Spark SQL可以从各种结构化数据(例如JSON.Hive.Parquet等)中读取数据. 2.2 Spark SQL不仅支持在Spark程序内使用SQL语句进行查询,也支持从类似商业智能软件Tableau这样的外部工具中通过标准数据库连接器(JDBC/ODBC)连接Spark SQL进行查询. 2.3 当在Spark程序内使用Sp…