典型相关分析 (一)引入 典型相关分析(Canonical Correlation Analysis)是研究两组变量之间相关关系的一种多元统计方法.他能够揭示出两组变量之间的内在联系. 我们知道,在一元统计分析中,用相关系数来衡量两个随机变量的线性相关关系,用复相关系数研究一个随机变量与多个随机变量的线性相关关系.然而,这些方法均无法用于研究两组变量之间的相关关系,于是提出了CCA.其基本思想和主成分分析非常相似.首先,在每组变量中寻找出变量的线性组合,使得两组的线性组合之间具有最大的相关系数:…
Kernel典型相关分析 (一)KCCA 同样,我们可以引入Kernel函数,通过非线性的坐标变换达到之前CCA所寻求的目标.首先,假设映射$\Phi_X: x\rightarrow \Phi_X(x), \Phi_Y: y\rightarrow \Phi_Y(y)$,记$\mathbf{\Phi_X}=(\Phi_X(x_1),\Phi_X(x_2),\cdots,\Phi_X(x_p))^\prime, \mathbf{\Phi_Y}=(\Phi_Y(y_1),\Phi_Y(y_2),\cd…
Canonical Correlation Analysis(CCA)典型相关分析也是一种常用的降维算法.我们知道,PCA(Principal Component Analysis) 主分量分析将数据从高维映射到低维空间同时,保证了数据的分散性尽可能地大, 也就是数据的方差或者协方差尽可能大.而LDA(Linear Discriminant Analysis) 线性判别分析则利用了类标签,利用一种监督学习的方法,将数据从高维空间映射到低维空间时,让不同类的数据尽可能地分开而同一类的数据尽可能地聚…
1.从概率论中相关系数推广而来 在概率论中,研究两个变量之间的线性相关情况时,提出了 相关系数 这个概念.做一下推广,如果研究一个变量和多个随机变量之间的线性相关关系时,提出了 全相关系数(或者复相关系数)的概念.然后,在1936年,有个叫做hotelling的数学家,又进一步做了推广,研究 多个随机变量和多个随机变量之间的线性相关关系,提出了 经典相关分析 的理论. 2.经典相关分析的定义 经典相关分析是研究两组变量相关关系的一种多元统计方法. 要研究两组变量:和之间的相关关系,有两种方法:一…
  本文介绍了CCA解决的问题,CCA原理的推导过程,以及对计算结果物理意义的解释.并且通过SPSS和R操作演示了一个关于CCA的例子.数据文件下载参考[8],SPSS输出结果文件下载参考[9],R代码文件下载参考[10]. 一.CCA工作原理 1.CCA定义   首先需要搞清楚典型相关分析(Canonical Correlation Analysis)解决了什么问题,它解决的是一组变量与另外一组变量的相关问题.举个例子,比如想要量化家庭特征与家庭消费之间的关系,其中,家庭特征包括户主的年龄.家…
Hello,我是你们人见人爱花见花开的小花.又和大家见面了,今天我们来聊一聊多视图学习利器------CCA. 一 典型相关分析的基本思想 当我们研究两个变量x和y之间的相关关系的时候,相关系数(相关系数是用以反映变量之间相关关系密切程度的统计指标.相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度:着重研究线性的单相关系数)是最常用的变量:其中Sxx为标准差. 那我们如何研究两组变量之间的相关关系呢?比如(X1,X2,X3)与(y1,y2)…
我们已经知道,两个随机变量间的相关关系可以用简单相关系数表示,一个随机变量和多个随机变量的相关关系可以用复相关系数表示,而如果需要研究多个随机变量和多个随机变量间的相关关系,则需要使用典型相关分析. 典型相关分析由于研究的是两组随机变量之间的相关关系,因此也属于一种多元统计分析方法,多元统计分析方法基本上都有降维的思想,典型相关分析也不例外,它借用主成分分析的思想,在多个变量中提取少数几个综合变量,将研究多个变量间的相关关系转换为研究几个综合变量的相关关系. 典型相关分析首先在每组变量中寻找线性…
Jordan Lecture Note-3:梯度投影法 在这一节,我们介绍如何用梯度投影法来解如下的优化问题: \begin{align} \mathop{\min}&\quad f(x)\nonumber\\\mathop{s.t.}&\quad \mathbf{A}_1 x\leq b_1\nonumber\\&\quad \mathbf{A}_2x= b_2\label{equ:originalModel}\end{align} 其中$x\in\mathbb{R}^n,\ma…
传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关.数据为分类数据等情况,并且不再仅限于两个变量间的分析, 虽然具体算法非常复杂,但是过程却只要两步,首先对变量进行最优尺度变换,然后对其进行典型相关分析. 我们还是以之前的多重对应分析的案例数据进行分析 过程还是在分析—降维—最佳尺度…
Jordan Lecture Note-1: Introduction 第一部分要整理的是Jordan的讲义,这份讲义是我刚进实验室时我们老师给我的第一个任务,要求我把讲义上的知识扩充出去,然后每周都要讲给他听.如果有需要这份讲义的话,请留言,我会用邮件发给你. 首先,我来说说机器学习这个东西.刚进实验室,我根本连什么是机器学习都不知道,听到这个名词后的第一反应是机器人,心想估计是搞硬件的.后来才发现其实机器学习更偏向于后面两个字,也就是“学习”.打个不恰当的比方吧,人类在婴儿时期,还无法对世上…
1.关键点 #典型相关分析##典型相关分析是用于分析两组随机变量之间的相关程度的一种统计方法,它能够有效地揭示两组随机变量之间的相互(线性依赖)关系#例如 研究生入学考试成绩与本科阶段一些主要课程成绩的相关性#将研究两组变量的相关性问题转化为研究两个变量的相关性问题 此类相关为典型相关##总体典型相关#样本典型相关#典型相关计算 cancor(x,y,xcenter=TRUE,ycenter=TRUE)#x,y是相应的数据矩阵 xcenter,ycenter是逻辑变量 TRUE是将数据中心化 F…
题目1 : Colorful Lecture Note 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a plain…
Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a plain(black and white) text editor. So he decides to tag the text which…
Colorful Lecture Note 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a plain(black…
#1103 : Colorful Lecture Note 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Little Hi is writing an algorithm lecture note for Little Ho. To make the note more comprehensible, Little Hi tries to color some of the text. Unfortunately Little Hi is using a pla…
Kernel Principal Components Analysis PCA实际上就是对原坐标进行正交变换,使得变换后的坐标之间相互无关,并且尽可能保留多的信息.但PCA所做的是线性变换,对于某些数据可能需要通过非线性变换,比如在二维空间下对如下数据进行处理.如果还是采用最初的PCA,则得到的主成分是$z_1,z_2$,而这里的$z_1,z_2$都包含了大量的信息,故无法去掉任何一个坐标,也就达不到降维的目的.而此时如果采用极坐标变换(属于非线性变换),我们就可以尽用一条坐标包含大量的信息(…
Principal Components Analysis (一)引入PCA    当我们对某个系统或指标进行研究时往往会发现,影响这些系统和指标的因素或变量的数量非常的多.多变量无疑会为科学研究带来丰富的信息,但也会在一定程度上增加工作的难度,而通常变量之间又具有一定的相关性,这又增加了问题分析的复杂度.如果分别分析每个变量,那么分析又不够综合,而盲目的减少变量又会损失很多有用的信息.因而我们自然而然想到能否用较少的新变量去代替原来较多的旧变量(即降维),同时使这些新变量又能够尽可能保留原来旧…
The Sequential Minimal Optimization Algorithm (SMO) 本文主要介绍用于解决SVM对偶模型的算法,它于1998年由John Platt在论文“Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines”中提出的.这篇笔记还参考了某篇博客,但由于是一年前的事了,暂时没找到这篇博客,所以没有引用出来,希望该篇博客的主人见谅. (1)解决的问题…
Kernels 我们首先来回顾kernel函数的定义:一个函数$K(x,y)$为kernel函数当且仅当对$\forall g, \int K(x,y)g(x)g(y)dxdy\geq 0$成立.另外,根据Mercer's theorem,存在一个映射$\Phi$使$K(x,y)=\langle \Phi(x),\Phi(y)\rangle$,并且对任意有限的点,kernel矩阵是半正定的. 一.核函数的封闭性 Hadamard product: $$\mathbf{A}\circ\mathbf…
Maximal Margin Classifier Logistic Regression 与 SVM 思路的不同点:logistic regression强调所有点尽可能远离中间的那条分割线,而SVM则强调最靠近分割线的点于分割线的距离仅可能的远. 定义间隔函数:$\hat{r}^{(i)}=y^{(i)}(w^\prime x^{(i)}+b)$.当$y^{(i)}=1$时,$w^\prime x^{(i)}+b>0$:当$y^{(i)}=-1$时,$w^\prime x^{(i)}+b<…
Linux 文件系统与设备文件系统(3) 成于坚持,败于止步 sysfs 文件系统与 Linux 设备模型 1.sysfs 文件系统 Linux 2.6 内核引入了 sysfs 文件系统,sysfs 被看成是与 proc.devfs 和 devpty 同类别的文件系统,该文件系统是一个虚拟的文件系统,它可以产生一个包括所有系统硬件的层级视图,与提供进程和状态信息的 proc 文件系统十分类似. sysfs 把连接在系统上的设备和总线组织成为一个分级的文件,它们可以由用户空间存取,向用户空间导出内…
Soft Margin SVM  (1)Recall 之前分析到SVM的模型为: \begin{align}\mathop{\min}&\quad \frac{1}{2}w^\prime w\nonumber\\\mathop{s.t}&\quad y_i(x_i^\prime w+b)\geq 1, i=1,2,\cdots,m\label{model:SVM}\end{align} 利用Lagrange乘子法转化为对偶问题: \begin{align}\mathop{\max}&…
The Solutions of Nonlinear Equation 本文主要介绍几种用于解非线性方程$f(x)=0$的一些方法. (1) Bisection Method. 算法: step 1: 初始化$a,b(b>a)$,使$f(a),f(b)$异号. step 2: while (停止条件不满足) $p=a+\frac{b-a}{2}$: 若 $f(p)f(a)<0$,$b=p$:否则$a=p$. end while step 3: 返回的$p$为方程$f(x)=0$的解. 停止条件…
Linear & Ridge Regression 对于$n$个数据$\{(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)\},x_i\in\mathbb{R}^d,y_i\in\mathbb{R}$.我们采用以下矩阵来记上述数据: \begin{equation}\mathbf{X}=\left[\begin{array}& x_1^\prime\\ x_2^\prime\\\vdots\\ x_n^\prime\end{array}\right]\quad y=…
字典 Dictionary +什么是字典? +一系列的"键-值(key-value)"对 +通过"键"查找对应的"值" +类似纸质字典,通过单词索引表找到其相应的定义 C++:map Java:HashTable or HashMap 例如:电话本 创建字典 使用 { } 创建字典 使用 : 指明 键:值 对 my_dict = {'John':86411234,'Bob':86419453,'Mike':86412387} 键必须是 不可变 的…
1.函数名就是一个变量 def func(): print("我是一个小小的函数") a = func print(a) #输出变量存放地址 <function func at 0x00000251AD780048> func() #func()等同于a(),输出 我是一个小小的函数 2.函数名是变量名 def func1(): print("我是1") def func2(): print("我是2") def func3(): p…
https://www.cnblogs.com/pinard/p/6288716.html…
Awesome Courses  Introduction There is a lot of hidden treasure lying within university pages scattered across the internet. This list is an attempt to bring to light those awesome courses which make their high-quality material i.e. assignments, lect…
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcement learning Structured prediction Feature engineering Feature learning Online learning Semi-supervised learning Unsupervised learning Learning to rank…
论文原址:https://arxiv.org/abs/1811.07275 摘要 一个训练好的网络模型由于其模型捕捉的特征中存在大量的重叠,可以在不过多的降低其性能的条件下进行压缩剪枝.一些skip/Dense网络结构一定程度上减弱了重叠的现象,但这种做法引入了大量的计算及内存.本文从更改训练方式的角度来解决上述问题.本文发现,通过对模型进行临时裁剪,并对一定的filter进行恢复,重复操作,可以减少特征中的重叠效应,同时提高了模型的泛化能力.本文证明当前的压缩标准在语义上并不是最优的,本文引入…