增强学习贪心算法与Softmax算法】的更多相关文章

(一) 这个算法是基于一个概率来对探索和利用进行折中:每次尝试时,以概率进行探索,即以均匀概率随机选取一个摇臂,以的概率进行利用,即以这个概率选择当前平均奖赏最高的摇臂(如有多个,则随机选取). 其中:小k表示第k个摇臂.因为大K表示摇臂总数:n表示尝试的次数,vn表示第n次尝试的奖赏. Qn的直观意思为:为前n-1次的平均奖赏.当其与n-1相乘所得是前n-1次总奖赏.再加上第n次的奖赏,处于n,则为n次的平均奖赏. 其中:argmax为选取最优的Q(i).count是从0开始的,故count(…
[TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现.平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦.而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本. 首先,对于实现马里奥A…
大牛讲堂 | 算法工程师入门第二期-穆黎森讲增强学习 2017-07-13 HorizonRobotics…
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
[ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,对A事件概率的一个判断.P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,对A事件概率的重新评估.P(B|A)/P(B)称为"可能性函数"(Lik…
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
最近偶尔发现一个算法编程学习的论坛,刚开始有点好奇,也只是注册了一下.最近有时间好好研究了一下,的确非常赞,所以推荐给大家.功能和介绍看下面介绍吧.首页的标题很给劲,很纯粹的Coding社区....虽然目前人气可能一般,但这里面题目和资源还是比较丰富的,希望给初学者一个帮助. 本文原文地址:[推荐]一个算法编程学习中文社区-51NOD[算法分级,支持多语言,可在线编译] 1.51NOD论坛介绍 该论坛网址:http://www.51nod.com/index.html 论坛主要是进行算法学习和交…
一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量…
笔者在学习数据结构与算法时,尝试着将排序算法以动画的形式呈现出来更加方便理解记忆,本文配合Demo 在Object-C中学习数据结构与算法之排序算法阅读更佳. 目录 选择排序 冒泡排序 插入排序 快速排序 双路快速排序 三路快速排序 堆排序 总结与收获 参考与阅读 选择排序 选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度.所以用到它的时候,数据规模越小越好.唯一的好处可能就是不占用额外的内存空间了吧. 1.算法步骤 首先在未排序序列中找到最小(大)元素,存放到排…
机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.c…