Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出. Mean shift将特征空间视为先验概率密度函数,那么输入就被视为是一组满足某种概率分布的样本点,这样一来,特征空间中数据最密集的地方,对应于概率密度最大的地方,且概率密度的质心就可以被视为是概率密度函数的局部最优值,也就是要求的聚类中心.对于每一个样本点,计算以它为中心…
最近在将Karlsruhe Institute of Technology的Andreas Geiger发表在ACCV2010上的Efficent Large-Scale Stereo Matching代码仿真.Andreas提供的源码中没有使用opencv,导致我一时无法适应如何显示处理的中间结果.将对应的库加载后,仿照采集相机图像数据的方式,从内存中读取对应图像到IplImage类型指针指定的内存空间,方便代码的调试和效果观测.其中用到的部分资料如下. *******************…
Mat作为opencv中一种数据类型常常用来存储图像,相对与以前的IplImgae类型来说,Mat类型省去了人工的对内存的分配与释放,转而自动分配释放.Mat Class主要包括两部个数据部分:一个是matrix header(包括matrix的大小尺寸,储存方法,储存地址等等..),另一个是指向存储像素值的矩阵的指针. Opencv中对Mat的复制分为两种, Mat A, C; // creates just the header parts A = imread(argv[], CV_LOA…