所谓"学派"是指:存在一帮人,具有同样或接近的学术观点或学术立场,採用某种特定的"方法"(或途径),在一个学术方向上共同开展工作.而且做出了相当有迎影响的学术成就. 数学定理证明机械化的途径非常多,可是."吴方法"仅仅有一种.什么是"吴方法"?我们拿初等(平面)几何学为例,所谓"吴方法"实质上就是"方程联立求证法". 什么叫"方程联立求证法"呢? 比方说,我们须要求证…
Deepmath Deepmath项目旨在改进使用深度学习和其他机器学习技术的自动化定理证明. Deepmath是Google研究与几所大学之间的合作. 免责声明: 该存储库中的源代码不是Google的官方产品,而是与外部研究团队的研究合作. 现在,存储库仅包含HOL Light内核的C ++实现,我们早期已经发布了这些实现来促进现有协作.更多代码即将发布,包括神经网络模型. https://github.com/tensorflow/deepmath Deepmath The Deepmath…
0 写在前面 本文受 NaVi_Awson 的启发,甚至一些地方直接引用,在此说明. 1 数论 1.0 gcd 1.0.0 gcd $gcd(a,b) = gcd(b,a\;mod\;b)$ 证明:设 $c\mid a$,$c\mid b$,则 $c\mid (b-a)$. 设 $c\nmid a$,则 $c$ 不是 $a,b-a$ 的公因子. 设 $c\mid a$,$c\nmid b$,则 $c$ 不是 $a,b-a$ 的公因子. int gcd(int a,int b){ if(!b) r…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
Proof of Hammersley-Clifford TheoremProof of Hammersley-Clifford Theorem依赖知识定义1定义2证明过程反向证明(吉布斯分布=>MRF)正向证明(MRF=>吉布斯分布)证明第一点证明第二点疑问点​ 最近看语义分割论文DeepLab,有使用全连接CRF恢复局部的细节信息,提升分割精度.又回去复习了下CRF,仍然有一个问题很困扰: “根据Hammersley Clifford定理,一个无向图模型的概率可以表示为定义在图上所有最大团…
Wilson定理证明 就是那个\((p-1)! \equiv -1 \pmod{p}\),\(p\)是一个素数. Lemma A \(\mathbb{Z}_p\)可以去掉一个零元变成一个群. 即\(\forall a\in \mathbb{Z}_ {p},a\not= \overline{0}, \exists b \in \mathbb{Z}_p,ab=\overline{1}\)也就是存在逆元. Lemma B \(\forall a\in \mathbb{Z}_p,a\not=\overl…
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an e…
写在前面 由于上一篇总结的版面限制,特开此文来记录 \(OI\) 中多项式类数学相关的问题. 该文启发于Miskcoo的博客,甚至一些地方直接引用,在此特别说明:若文章中出现错误,烦请告知. 感谢你的造访. 前置技能 多项式相关 形同 \(P(X)=a_0+a_1X+a_2X^2+\cdots+a_nX^n\) 的形式幂级数 \(P(X)\) 称为多项式.其中 \(\{a_i|i\in[0,n]\}\) 为多项式的系数: \(n\) 表示多项式的次数. 多项式的系数表示 对于 \(n\) 次多项…
目录 写在前面 前置技能 多项式相关 多项式的系数表示 多项式的点值表示 复数相关 复数的意义 复数的基本运算 单位根 代码相关 多项式乘法 快速傅里叶变换 DFT IDFT 算法实现 递归实现 迭代实现 快速数论变换 原根 算法实现 模数任意的解决方案 应用 快速卷积 多项式求逆 基本概念 求解方法 算法实现 求第二类斯特林数 第二类斯特林数 \(\text{NTT}\) 优化 快速沃尔什变换 \(xor\) 卷积 结论(三种卷积求法) 正向 \(\text{tf}\) 逆向 \(\text{…
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而MatrixTree没人证我就写一下吧-- Matrix Tree结论 Matrix Tree的结论网上可多,大概一条主要的就是,图中生成树的数量等于 \(V-E\) 的任一余子式,其中: \(V\) 为对角阵,第 \(i\) 个元素为点 \(i\) 的度数 \(E\) 为对称阵,对角线为零且 \(E_{i,…