Batch Normalization Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果. 众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等.这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面.BN算法就可以完美的解决这些问题. 当我们使用了BN算法,我…
原文地址: http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce ---------------------------------------------------------------------------------------------------- 一.背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:<Batch Normalization: Accelerating Deep N…
在机器学习领域中,有一个重要的假设:独立同分布假设,也就是假设训练数据和测试数据是满足相同分布的,否则在训练集上学习到的模型在测试集上的表现会比较差.而在深层神经网络的训练中,当中间神经层的前一层参数发生改变时,该层的输入分布也会发生改变,也就是存在内部协变量偏移问题(Internal Covariate Shift),从而造成神经层的梯度消失,模型收敛过慢的问题. Batch Normalization(BN,批量标准化)就是一种解决内部协变量偏移问题的方法,它通过对神经网络的中间层进行逐层归…
原文:http://blog.csdn.net/happynear/article/details/44238541 今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节. 这次先讲Google的这篇<Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift>,主要是因为这里面的思想比较…
Coursera吴恩达<优化深度神经网络>课程笔记(3)-- 超参数调试.Batch正则化和编程框架 1. Tuning Process 深度神经网络需要调试的超参数(Hyperparameters)较多,包括: :学习因子 :动量梯度下降因子 :Adam算法参数 #layers:神经网络层数 #hidden units:各隐藏层神经元个数 learning rate decay:学习因子下降参数 mini-batch size:批量训练样本包含的样本个数 超参数之间也有重要性差异. 1.通常…
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神经元激活,输出一个变换后的神经电位值.而在神经网络的设计中引入了这一概念,来增强神经网络的非线性能力,更好的模拟自然界.所以激活函数的主要目的是为了引入非线性能力,即输出不是输入的线性组合. 假设下图中的隐藏层使用的为线性激活函数(恒等激活函数:a=g(z)),可以看出,当激活函数为线性激活函数时,…
这一周的主体是调参. 1. 超参数:No. 1最重要,No. 2其次,No. 3其次次. No. 1学习率α:最重要的参数.在log取值空间随机采样.例如取值范围是[0.001, 1],r = -4*np.random.rand(), α = 10r. No. 2 Momentum β:0.9是个不错的选择.在1-β的log取值空间随机采样.例如取值范围[0.9, 0.999],则1-β的取值空间[0.001, 0.1]. No. 2 各个隐含层的神经元数量:可以在线性取值空间随机采样. No.…
批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanishing Gradient Problem). 统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的.也就是说,训练数据和测试数据是满足相同分布的.这是通过训练数据获得的模型能够在测试集上获得好的效果的一个基本保障. Convariate Shi…
前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhihu.com/question/38102762——知乎网友 Deep Learning与Bayesian Learning在很多情况下是相通的,随着Deep Learning理论的发展, 我们看到,Deep Learning越来越像Bayesian Learning的一个子集,Deep Learni…
一.BN 的作用 1.具有快速训练收敛的特性:采用初始很大的学习率,然后学习率的衰减速度也很大 2.具有提高网络泛化能力的特性:不用去理会过拟合中drop out.L2正则项参数的选择问题 3.不需要使用使用局部响应归一化层,BN本身就是一个归一化网络层 4.可以把训练数据彻底打乱 神经网络训练开始前,都要对输入数据做一个归一化处理,原因在于神经网络学习过程本质就是为了学习数据分布,一旦训练数据与测试数据的分布不同,那么网络的泛化能力也大大降低:另外一方面,一旦每批训练数据的分布各不相同(bat…